Skip to main content

Zusammenfassung

Der Gebrauch des Ultraschall-B-Bild-Verfahrens in der Augenheilkunde hat sich in den letzten 30 Jahren sehr bewährt. Das generelle Prinzip der Bilderstellung mit Ultraschall basiert auf der Entwicklung des Unterwassersonars in der Schifffahrt. Ein sog. piezoelektrischer Kristall, d. h. ein durch elektrische Stimulation verformbarer Kristall im Schallkopf, generiert Ultraschallimpulse als Antwort auf kurze elektrische Stimulationen. Die Impulse breiten sich durch ein Ankoppelungsmedium mit der in der Umgebung geltenden Schallgeschwindigkeit aus und durchdringen die Gewebe des Auges. Sie haben — abhängig von der jeweiligen Gewebeart — unterschiedliche Ausbreitungsgeschwindigkeiten, wobei Luft die Schallwellen sehr schlecht und Wasser sehr gut leitet. Die Schallwellen werden an großen Grenzflächen reflektiert und gebeugt, an kleinen Grenzflächen gestreut. Der Anteil, der den Schallkopf wieder erreicht, wird zur Bildgebung verwendet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Armaly MF, Jepson NC (1962) Accommodation and the dynamics of the steady-state intraocular pressure. Invest Ophthalmol Vis Sci 1:480–483

    CAS  Google Scholar 

  2. Bacskulin A, Gast R, Bergmann U, Guthoff R (1996) Ultrasound biomicroscopy imaging of accommodative configuration changes in the presbyopic ciliary body. Ophthalmologe 93/2:199–203

    PubMed  CAS  Google Scholar 

  3. Burian HM, Allen L (1955) Mechanical changes during accommodation observed by gonioscopy. Arch Ophthalmol 188:1–19

    Google Scholar 

  4. Coleman DJ, Lizzi FL, Jack R (1977) Ultrasonography of the eye and orbit. Lea & Febinger, Philadelphia

    Google Scholar 

  5. Coleman DJ, Silverman RH, Daly SM et al. (1998) Advances in ophthalmic ultrasound. Radiol Clin North Am 36/6:1073–1082

    Article  PubMed  CAS  Google Scholar 

  6. Cusumano A, Coleman DJ, Silverman RH et al. (1998) Three-dimensional ultrasound imaging. Clinical applications. Ophthalmology 105/2: 300–306

    Article  PubMed  CAS  Google Scholar 

  7. Frieling E, Dembinsky B (1995) Morphometry of the ciliary body using ultrasound biomicroscopy. Ophthalmologe 92/5:745–749

    PubMed  CAS  Google Scholar 

  8. Garcia-Feijoo J, Benitez del Castillo JM, Martin-Carbajo M, Garcia-Sanchez J (1997) Orbital cup. A device to facilitate ultrasound biomicroscopic examination of pars plana and peripheral retina. Arch Ophthalmol 115/11:1475–1476

    Article  PubMed  CAS  Google Scholar 

  9. Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106/)863–872

    Article  PubMed  CAS  Google Scholar 

  10. Hill CR (1976) Ultrasonic imaging. J Phys [E] 9/3:153–62

    CAS  Google Scholar 

  11. Humphrey Instruments, Inc. (1993) Ultrasound Biomicroscope Model 840 — Owner’s Manual

    Google Scholar 

  12. Lo Presti L, Morgese A, Ravot M, Brogliatti B, Carenini BB (1998) Ultrabiomicroscopic study of the effects of brimonidine, apraclonidine, latanoprost and ibopamine on the chamber angle and ciliary body. Acta Ophthalmol Scand [Suppl] 227:32–34

    Google Scholar 

  13. Maberly DA, Pavlin CJ, McGowan HD, Foster FS, Simpson ER (1997) Ultrasound biomicroscopic imaging of the anterior aspect of peripheral choroidal melanomas. Am J Ophthalmol 123/4:506–14

    PubMed  CAS  Google Scholar 

  14. Makabe R (1989) Comparative studies of the anterior chamber angle width by ultrasonography and gonioscopy. Klin Monatsbl Augenheilkd 194:6

    Article  PubMed  CAS  Google Scholar 

  15. Marchini G, Babighian S, Tosi R, Bonomi L (1999) Effects of 0.2% brimonidine on ocular anterior structures. J Ocul Pharmacol Ther 15/4:337–44

    Article  PubMed  CAS  Google Scholar 

  16. Ossoinig KC, Dallow RL (1979) Standardized echography: Basic principles, clinical applications and results. Int Ophthalmol Clin 19:127–210

    Article  PubMed  CAS  Google Scholar 

  17. Pavlin CJ, Foster FS (1998) Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution. Radiol Clin North Am 36/6:1047–58

    Article  PubMed  CAS  Google Scholar 

  18. Pavlin CJ, Foster FS (1995) Ultrasound biomicroscopy of the eye. Springer, Berlin Heidelberg New York Tokyo, pp 50–60

    Book  Google Scholar 

  19. Pavlin CJ, Harasiewicz K, Foster FS (1994) Eye cup for ultrasound biomicroscopy. Ophthalmic Surg 25/2:131–132

    PubMed  CAS  Google Scholar 

  20. Pavlin CJ, Sherar MD, Foster FS (1990) Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology 97/2:244–250

    PubMed  CAS  Google Scholar 

  21. Pierro L, Conforto E, Resti AG, Lattanzio R (1998) High-frequency ultrasound biomicroscopy versus ultrasound and optical pachymetry for the measurement of corneal thickness. Ophthalmologica 212 [Suppl 1]:1–3

    Article  PubMed  Google Scholar 

  22. Reinstein DZ, Silverman RH, Sutton HF et al. (1999) Very high-frequnecy ultrasound corneal analysis identifies anatomic correlates of optical complications of lamellar refractive surgery: anatomic diagnosis in lamellar surgery. Ophthalmology 106/3:474–482

    Article  PubMed  CAS  Google Scholar 

  23. Sherar MD, Starkoski BG, Taylor WB, Foster FS (1989) A 100 MHz-B-scan ultrasound backscatter microscope. Ultrasonic Imaging 11:95–105

    Article  PubMed  CAS  Google Scholar 

  24. Silverman RH, Kruse DE, Coleman DJ et al. (1999) High-resolution ultrasonic imaging of blood flow in the anterior segment of the eye. Invest Ophthalmol Vis Sci 40(7):1373–1381

    PubMed  CAS  Google Scholar 

  25. Silverman RH, Reinstein DZ, Raevsky T et al. (1997) Improved system for sonographic imaging and biometry of the cornea. J Ultrasound Med 16/2:117–124

    PubMed  CAS  Google Scholar 

  26. Silverman RH, Rondeau MJ, Lizzi FL, Coleman DJ (1995) Three-dimensionl high-frequnecy ultrasonic parameter imaging of anterior segment pathology. Ophthalmology 102:837–843

    PubMed  CAS  Google Scholar 

  27. Sugimoto M, Ishikawa H, Esaki K, Liebmann JM, Uji U, Ritch R (1998) The hidden information within ultrasound biomicroscopy. Invest Ophthalmol Vis Sci 39 [Suppl]:1032

    Google Scholar 

  28. Tello C, Liebmann JM, Ritch R (1994) An improved coupling medium for ultrasound biomicroscopy. Ophthalmic Surg 25(6):410–411

    PubMed  CAS  Google Scholar 

  29. Tello C, Potash S, Liebmann J, Ritch R (1993) Soft contact lens modification of the ocular cup for high-resolution ultrasound biomicroscopy. Ophthalmic Surg 24/8:563–4

    PubMed  CAS  Google Scholar 

  30. Thijssen MJ, Mol MJ, Timer MR (1983) Acoustic parameters of ocular tissues. Ultrasound Med Biol 11:157

    Article  Google Scholar 

  31. Turnbull DH, Starkoski BG, Harasiewicz KA, Semple JL, From L, Gupta AK, Sauder DN, Foster FS (1995) A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound Med Biol 21/1:79–88

    Article  PubMed  CAS  Google Scholar 

  32. Urbak SF (1998) Ultrasound biomicroscopy. I. Precision of measurements. Acta Ophthalmol Scand 76:447–455

    Article  PubMed  CAS  Google Scholar 

  33. Ursea R, Coleman DJ, Silverman RH et al. (1998) Correlation of high-frequency ultrasound backscatter with tumor microstructure in iris melanoma. Ophthalmology 105/5:906–912

    Article  PubMed  CAS  Google Scholar 

  34. Von Helmholtz H (1855) Über die Akkommodation des Auges. Albrecht Graefe’s Arch Ophthalmol 1:1–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roters, S., Krieglstein, G.K. (2001). Grundlagen. In: Atlas der Ultraschall-Biomikroskopie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56907-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56907-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63144-3

  • Online ISBN: 978-3-642-56907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics