Skip to main content

Cell Signaling by Endothelin Peptides

  • Chapter
Endothelin and Its Inhibitors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 152))

Abstract

Endothelin (ET) peptides are surprisingly multifunctional. They control diverse physiological events such as vascular tone, cardiac, pulmonary, and renal function. Endothelins also direct phenotypic functions including cell growth, development, and differentiation. ET receptors control these events by evoking a complex, integrated network of signaling pathways. ET signaling has emerged as an important model for understanding how G protein-coupled receptors function in physiology and pathophysiology, particularly for those signals that regulate the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Araki S-I, Haneda M et al. (1997) Endothelin-1 activates c-Jun NH2-terminal kinase in mesangial cells. Kidney Int 51:631–639

    Article  PubMed  CAS  Google Scholar 

  • Aramori I, Nakanishi S (1992) Coupling of two endothelin receptor subtypes to differing signal transduction in transfected Chinese hamster ovary cells. J Biol Chem 267:12468–12474

    PubMed  CAS  Google Scholar 

  • Auguet M, Delaflotte S et al. (1988) Endothelin and Ca++ agonist BAY K 8644: Different vasoconstrictive properties. Biochem Biophys Res Comm 156:186–192

    Article  PubMed  CAS  Google Scholar 

  • Badr KF, Murray JJ et al. (1989a) Mesangial cell, glomerular, and renal vascular responses to endothelin in the kidney. J Clin Invest 83:336–342

    Article  PubMed  CAS  Google Scholar 

  • Badr KF, Munger KA et al. (1989b) High and low affinity binding sites for endothelin on cultured rat glomerular mesangial cells. Biochem Biophys Res Comm 161: 776–781

    Article  PubMed  CAS  Google Scholar 

  • Battistini B, Chailler P et al. (1993) Growth regulatory properties of endothelins. Peptides 14:385–399

    Article  PubMed  CAS  Google Scholar 

  • Benigni A, Zoja C et al. (1993) A specific endothelin subtype A receptor antagonist protects against functional and structural injury in a rat model of renal disease progression. Kidney Int 44:440–444

    Article  PubMed  CAS  Google Scholar 

  • Benigni A, Zoja C et al. (1996) Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. Am J Kid Dis 27:416–423

    Article  PubMed  CAS  Google Scholar 

  • Berk BC, Canessa M et al. (1988) Agonist-mediated changes in intracellular pH: role in vascular smooth muscle cell function. J Cardiovasc Pharmacol 12(S5):S104–S114

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signaling. J Physiol. 499: 291–306

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1990) Inositol phosphates and cell signaling. Nature 341: 197–205

    Article  Google Scholar 

  • Blackburn K, Highsmith RF (1990) Nickel inhibits endothelin-induced contractions of vascular smooth muscle. Am J Physiol 258:C1025–C1030

    PubMed  CAS  Google Scholar 

  • Bogoyevitch MA, Glennon PE et al. (1994) Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. J Biol Chem 269:1110–1119

    PubMed  CAS  Google Scholar 

  • Boric MP, Donoso V et al. (1990) Endothelin reduces microvascular blood flow by acting on arterioles and venules of the hamster cheek pouch. Eur J Pharmacol 190:123–133

    Article  PubMed  CAS  Google Scholar 

  • Brown MT, Cooper JA (1996) Regulation, substrates, and functions of src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  • Cadwaller K, Beltman J et al. (1997) Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimulated Rat-1 cells. Biochem J 321:795–804

    Google Scholar 

  • Cantley LC, Auger KR et al. (1991) Oncogenes and signal transduction. Cell 64: 281–302

    Article  PubMed  CAS  Google Scholar 

  • Cazaubon SM, Ramos-Morales F et al. (1994) Endothelin induces tyrosine phosphorylation and GRB2 association of Shc in astrocytes. J Biol Chem 269: 24805–24809

    PubMed  CAS  Google Scholar 

  • Chakravarthy U, Gardiner TA et al. (1992) The effect of endothelin 1 on the retinal microvascular pericyte. Microvasc Res 43:241–254

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A (1996) Endothelin receptor-mediated signaling in Hirschsprung disease. Human Mol Genetics 5:303–307

    CAS  Google Scholar 

  • Chan J, Greenburg DA (1991) SK&F 96365, a receptor-mediated calcium entry inhibitor, inhibits calcium responses to endothelin-1 in NG108–15 cells. Biochem Biophys Res Comm 177:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Choukroun G, Hajjar R et al. (1998) Role of stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest 102:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Clerk A, Michael A et al. (1998) Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy? J Cell Biol 142:523–535

    Article  PubMed  CAS  Google Scholar 

  • Clouthier DE, Hosoda K et al. (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824

    PubMed  CAS  Google Scholar 

  • Courtneidge SA, Fumagalli S et al. (1993) The Src family of protein tyrosine kinases: regulation and functions. Development Suppl 57–64

    Google Scholar 

  • Danthuluri NR, Brock TA (1990) Endothelin receptor-coupling mechanisms in vascular smooth muscle: A role for protein kinase C. J Pharmacol Exp Ther 254: 393–399

    PubMed  CAS  Google Scholar 

  • D’Orleans-Juste P, deNucci G et al. (1989) Endothelin-1 contracts isolated vessels independently of dihydropyridine-sensitive Ca2+ channel activation. Eur J Pharmacol 165:289–295.

    Article  PubMed  Google Scholar 

  • Douglas SA, Louden C et al. (1994) A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty. Circ Res 75:190–197

    Article  PubMed  CAS  Google Scholar 

  • Edwards RM, Trizna WT et al. (1990) Renal microvascular effects of endothelin. Am J Physiol 259:F217–F221

    PubMed  CAS  Google Scholar 

  • Ferrer P, Valentine M, et al. (1995) Orally active endothelin receptor antagonist BMS-182874 suppresses neointimal development in balloon-injured rat carotid arteries. J Cardiovasc Pharmacol 26:908–915

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: What is its molecular basis? Cell 87:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Force TL, Mechanisms of endothelin-induced mitogenesis and activation of stress response protein kinases, in Endothelin receptors and signaling mechanisms, D.M. Pollock and R.F Highsmith, Editors. 1998, Springer-Verlag: Berlin, p. 177–215

    Chapter  Google Scholar 

  • Force T, Bonventre JV (1992) Endothelin activates Src Tyrosine kinase in glomerular mesangial cells. J Am Soc Nephrol 3:491–490

    Google Scholar 

  • Force T, Kyriakis JM et al. (1991) Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells. J Biol Chem 266:6650–6656

    PubMed  CAS  Google Scholar 

  • Foschi M, Chari S et al. (1997) Biphasic activation of p21ras by endothelin-1 sequentially activates the ERK cascade and phosphatidylinositol 3-kinase. EMBO J 16: 6439–6451

    Article  PubMed  CAS  Google Scholar 

  • Franke TF, Kaplan DR et al. (1997) PI3K: Downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  PubMed  CAS  Google Scholar 

  • Fukada Y, Hirata Y et al. (1988) Endothelin is a potent secretagogue for atrial natriuretic peptide in cultured rat atrial myocytes. Biochem Biophys Res Comm 155: 167–171

    Article  Google Scholar 

  • Fuller SJ, Davies EL et al. (1997) Mitogen-activated protein kinase phosphatase I inhibits the stimulation of gene expression by hypertrophic agonists in cardiac myocytes. Biochem J 323:313–319

    PubMed  CAS  Google Scholar 

  • Galron R, Kloog Y et al. (1989) Functional endothelin/sarafotoxin receptors in rat heart myocytes: structure-activity relationships and receptor subtypes. Biochem Biophys Res Comm 163:936–943

    Article  PubMed  CAS  Google Scholar 

  • Giad A, Yanagisawa M et al. (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. New Engl J Med 328:1732–1739

    Article  Google Scholar 

  • Goto K, Kasuya Y et al. (1989) Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci 86:3915–3918

    Article  PubMed  CAS  Google Scholar 

  • Griendling KK, Tsuda T et al. (1989) Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J Biol Chem 264:8237–8240

    PubMed  CAS  Google Scholar 

  • Guidry C, Hook M (1991) Endothelins produced by endothelial cells promote collagen gel contraction by fibroblasts. J Cell Biol 115:873–880

    Article  PubMed  CAS  Google Scholar 

  • Haneda M, Kikkawa R et al. (1995) Endothelin-1 stimulates tyrosine phosphorylation of p125 focal adhesion kinase in mesangial cells. J Am Soc Nephrol 6:1504–1510

    PubMed  CAS  Google Scholar 

  • Herman WH, Simonson MS (1995) Nuclear signaling by endothelin-1: A Ras pathway for activation of the c-fos serum response element. J Biol Chem 270:11654–11661

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  PubMed  CAS  Google Scholar 

  • Highsmith RF, Pang DC et al. (1989) Endothelial cell-derived vasoconstrictors: mechanisms of action in vascular smooth muscle. J Cardiovasc Pharmacol 13(S5): S36–S44

    Article  PubMed  CAS  Google Scholar 

  • Hocher B, Liefeldt L et al. (1996a) Characterization of the renal phenotype of transgenic rats expressing the human endothelin-2 gene. Hypertension 28:196–201

    Article  PubMed  CAS  Google Scholar 

  • Hocher B, Thone-Reineke C et al. (1996b) Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts in an age and gender dependent manner. J Am Soc Nephrol 12:1633–1630

    Google Scholar 

  • Hosoda K, Hammer RE et al. (1994) Targeted and natural (Piebald-Lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79:1267–1276

    Article  PubMed  CAS  Google Scholar 

  • Hu JR, Berninger UG et al. (1988) Endothelin stimulates atrial natriuretic peptide (ANP) release from rat atria. Eur J Pharmacol 158:177–180

    Article  PubMed  CAS  Google Scholar 

  • Huckle WR, Dy RC et al. (1992) Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci 89:8837–8841

    Article  PubMed  CAS  Google Scholar 

  • Imamoto A, Soriano P (1993) Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73:1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Oike M et al. (1990) Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J Physiol 423: 171–191

    PubMed  CAS  Google Scholar 

  • Isono M (1998) Atrial natriuretic peptide inhibits endothelin-1-induced activation of JNK in glomerular mesangial cells. Kidney Int. 53:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Iwamuro Y, Miwa S, et al. (1998) Activation of two types of Ca2+-permeable nonselective cation channels by endothelin-1 in A7r5 cells. Brit J Pharmacol 124: 1541–1549

    Article  CAS  Google Scholar 

  • Kar S, Yousem SA et al. (1995) Endothelin-1 expression by human hepatocellular carcinoma. Biochim Biophys Res Comm 216:514–519

    Article  CAS  Google Scholar 

  • Kasuya Y, Takuwa Y et al. (1989) Endothelin-1 induces vasoconstriction through two functionally distinct pathways in porcine artery-contribution of phosphoinositide turnover. Biochem Biophys Res Comm 161:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Kiowski W, Luscher TF et al. (1991) Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelium-derived relaxing factor. Circulation 83:469–475

    Article  PubMed  CAS  Google Scholar 

  • Kodama M, Kanaide H et al. (1989) Endothelin-induced Ca-independent contraction of the porcine coronary artery. Biochem Biophys Res Comm 160:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Kohan DE (1997) Endothelins in the normal and diseased kidney. J Kidney Dis. 29: 2–26

    Article  CAS  Google Scholar 

  • Komuro I, Kurihara H et al. (1988) Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 238:249–252

    Article  PubMed  CAS  Google Scholar 

  • Korbmacher C, Helbing H et al. (1989) Endothelin depolarized membrane voltage and increases intracellular calcium concentration in human ciliary muscle cells. Biochem Biophys Res Comm 164:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Kovacic B, Ilic D et al. (1998) c-Src activation plays a role in endothelin-dependent hypertrophy of the cardiac myocyte. J Biol Chem 273:35185–35193

    PubMed  CAS  Google Scholar 

  • Kurihara Y, Kurihara H et al. (1994) Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368:703–710

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Kurihara H et al. (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 96:293–300

    Article  PubMed  CAS  Google Scholar 

  • Kusuhara M, Yamaguchi K et al. (1990) Production of endothelin in human cancer cell lines. Cancer Res 50: 3257–3261

    PubMed  CAS  Google Scholar 

  • Kusuhara M, Yamaguchi K et al. (1992) Stimulation of anchorage-independent cell growth by endothelin in NRK 49F cells. Cancer Res 52:3011–3014

    PubMed  CAS  Google Scholar 

  • Lahav R, Ziller C et al. (1996) Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci 93:3892–3897

    Article  PubMed  CAS  Google Scholar 

  • Lee T-E, Chao T et al. (1989) Endothelin stimulates a sustained 1,2 diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells. Biochem Biophys Res Comm 162:381–386

    Article  PubMed  CAS  Google Scholar 

  • Lerman A, Edwards BS et al. (1991) Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. New Engl J Med 325:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Lewis TS, Shapiro PS et al. (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49–139

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Mattingly RR et al. (1996) Transformation of Rat-1 fibroblasts with the v-src oncogene increases the tyrosine phosphorylation state and activity of the a subunit of Gq/G11. Proc Natl Acad Sci 93:8258–8263

    Article  PubMed  CAS  Google Scholar 

  • MacNulty EE, Plevin R et al. (1990) Stimulation of the hydrolysis of phosphatidylinositol 4,5- bisphosphate and phosphatidylcholine by endothelin, a complete mitogen for Rat-1 fibroblasts. Biochem J 272:761–766

    PubMed  CAS  Google Scholar 

  • Madeddu P, Yang X et al. (1990) Efficacy of nifedipine to prevent systemic and renal vasoconstrictor effects of endothelin. Am J Physiol 259:F304-F311

    PubMed  CAS  Google Scholar 

  • Maher E, Bardequez A et al. (1991) Endothelin- and oxytocin-induced calcium signaling in cultured human myometrial cells. J Clin Invest 87:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Marsault, R, Vigne, P, et al. (1990) The effect of extracellular calcium on the contractile action of endothelin. Biochem Biophys Res Comm 171: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Marsden PA, Danthuluri NR et al. (1989) Endothelin action on vascular smooth muscle involves inositol trisphosphate and calcium mobilization. Biochem Biophys Res Comm 158:86–93

    Article  PubMed  CAS  Google Scholar 

  • Masaki T (1995) Possible role of endothelin in endothelial regulation of vascular tone. Ann Rev Pharmacol Toxicol 35: 235–255

    Article  CAS  Google Scholar 

  • Masaki T, Yanagisawa M et al. (1990) Cellular mechanism of vasoconstriction induced by endothelin. Adv Second Messenger Phosphoprotein Res 24:425–428

    PubMed  CAS  Google Scholar 

  • Mattingly RR, Wasilenko WJ et al. (1992) Selective amplification of endothelin-stimulated inositol 1,4,5-trisphosphate and calcium signaling by v-src transformation of Rat-1 fibroblasts. J Biol Chem 267:7470–7477

    PubMed  CAS  Google Scholar 

  • Mitsuhashi T, Morris RC et al. (1989) Endothelin-induced increases in vascular smooth muscle Ca2+ do not depend on dihydropyridine-sensitive Ca2+ channels. J Clin Invest 84:635–639

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi T, Masaki T (1999) Pathophysiology of endothelin in the cardiovascular system. Ann Rev Physiol 61:391–415

    Article  CAS  Google Scholar 

  • Mulder BJ, deTombe PP et al. (1989) Spontaneous and propagated contractions in rat cardiac trabeculae. J Gen Physiol 93:943–961

    Article  PubMed  CAS  Google Scholar 

  • Muldoon L, Rodland KD et al. (1989) Stimulation of phosphatidylinositol hydrolysis, diacylglycerol release, and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells. J Biol Chem 264:8529–8536

    PubMed  CAS  Google Scholar 

  • Muldoon LL, Pribnow D, et al. (1990) Endothelin-1 stimulates DNA synthesis and anchorage-independent growth of rat-1 fibroblasts through a protein kinase C-dependent mechanism. Cell Reg 1:379–390

    CAS  Google Scholar 

  • Naitoh T, Toyo oka T, et al. (1990) An endogenous Ca2+ channel agonist, endothelin-1, does not directly activate partially purified dihydropyridine-sensitive Ca2+ channel from cardiac muscle in a reconstituted system. Biochem Biophys Res Commun 171:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Nasmith PE, Mills GB et al. (1989) Guanine nucleotides induce tyrosine phosphorylation and activation of the respiratory burst in neutrophils. Biochem J 257:893–897

    PubMed  CAS  Google Scholar 

  • Nelson JB, Hedican SP et al. (1995) Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med 1:944–949

    Article  PubMed  CAS  Google Scholar 

  • Neuser D, Knorr A et al. (1990) Mitogenic activity of endothelin-1 and -3 on vascular smooth muscle cells is inhibited by atrial natriuretic peptides. Artery 17:311–324

    PubMed  CAS  Google Scholar 

  • Ohlstein EH, Horohonich S et al. (1989) Cellular mechanisms of endothelin in rabbit aorta. J Pharmacol Exp Ther 250:548–555

    PubMed  CAS  Google Scholar 

  • Pollock DM, Highsmith RF (1998) Endothelin receptors and signaling mechanisms. Berlin: Springer p. 1–224

    Chapter  Google Scholar 

  • Pollock DM, Keith TL et al. (1995) Endothelin receptors and calcium signaling. FASEB J 9:1196–1204

    PubMed  CAS  Google Scholar 

  • Puffenberger EG, Hosoda K et al (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Takuwa Y et al. (1987) Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1:177–185

    PubMed  CAS  Google Scholar 

  • Rasmussen K Printz MP (1989) Depolarization potentiates endothelin-induced effects on cytosolic calcium in bovine adrenal chromaffin cells. Biochem Biophys Res Comm 165:306–311

    Article  Google Scholar 

  • Rembold CM (1990) Modulation of the [Ca2+] sensitivity of myosin phosphorylation in intact swine arterial smooth muscle. J Physiol 429:77–94

    PubMed  CAS  Google Scholar 

  • Resink TJ, Scott-Burden T et al. (1988) Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem Biophys Res Comm 157:1360–1368

    Article  PubMed  CAS  Google Scholar 

  • Resink TJ, Scott-Burden T et al. (1990a) Activation of multiple signal transduction pathways by endothelin in cultured human vascular smooth muscle cells. Eur J Biochem 189:415–421

    Article  PubMed  CAS  Google Scholar 

  • Resink TJ, Scott-Burden T et al. (1990b) Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells. Biochem Biophys Re Comm 166:1213–1219

    Article  CAS  Google Scholar 

  • Reynolds EE, Mok LL et al. (1989) Phorbol ester dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells. Biochem Biophys Res Comm 160:868–873

    Article  PubMed  CAS  Google Scholar 

  • Rhoten RLP, Comair YG et al. (1997) Specific repression of the preproendothelin-1 gene in intracranial arteriovenous malformations. J Neurosurg 86:101–108

    Article  PubMed  CAS  Google Scholar 

  • Richardson A, Parsons JT (1995) Signal transduction through integrins: a central role for focal adhesion kinase. BioEssays 17:229–236

    Article  PubMed  CAS  Google Scholar 

  • Richardson A, Parsons JT (1996) A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK. Nature 380:538–540

    Article  PubMed  CAS  Google Scholar 

  • Roche S, Koegl M et al. (1995) DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Molec Cell Biol 15: 1102–1109

    PubMed  CAS  Google Scholar 

  • Sabe H, Knudsen B et al. (1992) Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proc Natl Acad Sci USA 89:2190–2194

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Miyauchi T et al. (1996) Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384:353–355

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ, Chow I et al. (1988) Intercellular communication between ciliated cells in culture. Am J Physiol 254:C63–C74

    PubMed  CAS  Google Scholar 

  • Sandok EK, Lerman A et al. (1992) Endothelin in a model of acute ischemic renal dysfunction: Modulating action of atrial natriuretic factor. J Am Soc Nephrol 3: 196–202

    PubMed  CAS  Google Scholar 

  • Schichiri M, Kato H et al. (1997) Endothelin-1 as an autocrine/paracrine apoptosis survival factor for endothelial cells. Hypertension 30:1198–1203

    Article  Google Scholar 

  • Schichiri M, Sedivy JM et al. (1998) Endothelin-1 is a potent survival factor for c-Myc dependent apoptosis. Mol Endo 12:172–180

    Article  Google Scholar 

  • Sharifi AM, Schiffrin EL (1997) Apoptosis in aorta of deoxycorticosterone acetate-salt hypertensive rats: effects of endothelin receptor antagonism. J Hypertens 15: 1441–1448

    Article  PubMed  CAS  Google Scholar 

  • Silberberg SD, Poder TC et al. (1989) Endothelin increases single-channel calcium currents in coronary arterial smooth muscle cells. FEBS Lett 247:68–72

    Article  PubMed  CAS  Google Scholar 

  • Simonson MS (1993) Endothelins: Multifunctional renal peptides. Physiol Rev 73: 375–411

    PubMed  CAS  Google Scholar 

  • Simonson MS (1994) Anti-AP-1 activity of all-trans retinoic acid in glomerular mesangial cells. Am J Physiol 267:F805–F815

    PubMed  CAS  Google Scholar 

  • Simonson MS, Dunn MJ (1990a) Cellular signaling by peptides of the endothelin gene family. FASEB J 4:2989–3000

    PubMed  CAS  Google Scholar 

  • Simonson MS, Dunn MJ (1990b) Endothelin-1 stimulates contraction of rat glomerular mesangial cells and potentiates β-adrenergic-mediated cyclic adenosine monophosphate accumulation. J Clin Invest 85:790–797

    Article  PubMed  CAS  Google Scholar 

  • Simonson MS, Dunn MJ (1991) Ca2+ signaling by distinct endothelin peptides in glomerular mesangial cells. Exp Cell Res 192:148–156

    Article  PubMed  CAS  Google Scholar 

  • Simonson MS, Herman WH (1993) Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1: Cross-talk between G protein-coupled receptors and pp60c-src. J Biol Chem 268:9347–9357

    PubMed  CAS  Google Scholar 

  • Simonson MS, Wann S et al. (1989) Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest 83:708–712

    Article  PubMed  CAS  Google Scholar 

  • Simonson MS, Osanai T et al. (1990) Endothelin isopeptides evoke Ca2+ signaling and oscillations of cytosolic free [Ca2+] in human mesangial cells. Biochim Biophys Acta 1055:63–68

    Article  PubMed  CAS  Google Scholar 

  • Simonson MS, Wang Y et al. (1996a) Ca2+ channels mediate protein tyrosine kinase activation by endothelin-1. Am J Physiol 270:F790–F797

    PubMed  CAS  Google Scholar 

  • Simonson MS, Wang Y et al. (1996b) Nuclear signaling by endothelin-1 requires Src protein tyrosine kinases. J Biol Chem 271:77–82

    Article  PubMed  CAS  Google Scholar 

  • Simpson AW, Ashley CC (1989) Endothelin evoked Ca2+ transients and oscillations in A10 vascular smooth muscle cells. Biochem. Biophys Res Comm 163:1223–1229

    Article  CAS  Google Scholar 

  • Simpson AW, Stampfl A et al. (1990) Evidence for receptor-mediated bivalent-cation entry in A10 vascular smooth-muscle cells. Biochem J 267:277–280

    PubMed  CAS  Google Scholar 

  • Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483

    Article  PubMed  CAS  Google Scholar 

  • Spetzler RF, Wilson CB et al. (1978) Normal perfusion pressure breakthrough theory. Clin Neurosurg 25:651–672

    PubMed  CAS  Google Scholar 

  • Su X, Wang P et al. (1999) Differential activation of phosphoinositide 3-kinase by endothelin and ceramide in colonic smooth muscle cells. Am J Physiol 276:G853–G861

    PubMed  CAS  Google Scholar 

  • Sugawara, F, Ninomiya, H, et al. (1996) Endothelin-1-induced mitogenic responses of Chinese hamster ovary cells expressing human endothelinA: The role of a wortmannin-sensitive signaling pathway. Mol Pharmacol 49: 447–457

    PubMed  CAS  Google Scholar 

  • Sugiura M, Inagami T et al. (1989) Endothelin action: inhibition by protein kinase C inhibitor and involvement of phosphoinositols. Biochem Biophys Res Comm 158: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Sunako M, Kawahara Y et al. (1990) Mass analysis of 1,2-diacylglycerol in cultured rabbit vascular smooth muscle cells. Hypertension 15:84–88

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Nagata D et al. (1999) Molecular mechanisms of endothelin-1-induced cell cycle progression. Circ Res 84:611–619

    Article  PubMed  CAS  Google Scholar 

  • Terada Y, Inoshita S et al. (1998) Cyclin Dl, pl6, and retinoblastoma gene regulate mitogenic signaling of endothelin in rat mesangial cells. Kidney Int 53:76–83

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Kurihara H et al. (1998) A signaling cascade involving endothelin-1, dHand, and Msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development 125:3005–3014

    PubMed  CAS  Google Scholar 

  • Twamley-Stein GM, Pepperkok R et al. (1993) The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc Natl Acad Sci U.S.A. 90:7696–7700

    Article  PubMed  CAS  Google Scholar 

  • Van Biesen T, Luttrell LM et al. (1996) Mitogenic signaling via G protein-coupled receptors. Endocrine Rev 17:698–714

    Google Scholar 

  • VanRenterghem C, Vigne P et al. (1988) Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem Biophys Res Comm 157:977–985

    Article  CAS  Google Scholar 

  • VanRenterghem C, Romey G et al. (1989) Vasopressin modulates spontaneous electrical activity in aortic cells (A7r5) by acting on three different types of ionic channels. Proc Natl Acad Sci 85:9365–9369

    Article  Google Scholar 

  • Vigne P, Lazdunski M et al. (1989) The inotropic effect of endothelin-1 on rat atria involves hydrolysis of phosphatidylinositol. FEBS Lett 249:143–146

    Article  PubMed  CAS  Google Scholar 

  • Vigne P, Marsault R et al. (1990) Endothelin stimulates phosphatidylinositol hydrolysis and DNA synthesis in brain capillary endothelial cells. Biochem J 266:415–420

    PubMed  CAS  Google Scholar 

  • Villaschi S, Nicosia RF (1994) Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model. Lab Invest 71:291–299

    PubMed  CAS  Google Scholar 

  • Wang Y, Simonson MS et al. (1992) Endothelin rapidly stimulates mitogen-activated protein kinase activity in rat mesangial cells. Biochem J 287:589–594

    PubMed  CAS  Google Scholar 

  • Wang Y, Rose PM et al. (1994) Endothelins stimulate mitogen-activated protein kinase cascade through either ETA or ETB. Am J Physiol 267:C1130–1135

    PubMed  CAS  Google Scholar 

  • Weber H, Webb ML et al. (1994) Endothelin-1 and angiotensin-II stimulate delayed mitogenesis in cultured rat aortic smooth muscle cells: Evidence for common signaling mechanisms. Mol Endocrinol 8:148–158

    Article  PubMed  CAS  Google Scholar 

  • Whelchel A, Evans J et al. (1997) Inhibition of ERK activation attenuates endothelin-stimulated airway smooth muscle cell proliferation. Am. J. Respir. Cell Mol Biol 16:589–596

    PubMed  CAS  Google Scholar 

  • Wilkes BM, Ruston AS et al. (1991) Characterization of endothelin 1 receptor and signal transduction mechanisms in rat medullary interstitial cells. Am J Physiol 260:F579–F589

    PubMed  CAS  Google Scholar 

  • Wu J, Garami M et al. (1996) 1,25 (OH)2 Vitamin D3 and retinoic acid antagonize endothelin-stimulated hypertrophy of neonatal rat cardiac myocytes. J Clin Invest 97:1577–1588

    Article  PubMed  CAS  Google Scholar 

  • Wu-Wong JR, Chiou WJ et al. (1997) Endothelin attenuates apoptosis in human smooth muscle cells. Biochem J 328:733–737

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Hsu C-C et al. (1993) Endothelin-1 mediates endothelial cell-dependent proliferation of vascular pericytes. Biochim Biophys Res Comm 191:840–846.

    Article  CAS  Google Scholar 

  • Yanagisawa M (1994) The endothelin system: A new target for therapeutic intervention. Circulation 89:1320–1322

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa M, Masaki T (1989) Endothelin, a novel endothelium-derived peptide. Biochem Pharmacol 38:1877–1883

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa M, Kurihara H, et al. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

  • Yanigisawa H, Hammer RE, et al. (1998a) Role of endothelin-1/endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 102:22–33

    Article  Google Scholar 

  • Yanagisawa H, Yanagisawa M, et al. (1998b) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836

    PubMed  CAS  Google Scholar 

  • Zachary I, Gil J et al. (1991a) Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc Natl Acad Sci U.S.A. 88: 4577–4581

    Article  PubMed  CAS  Google Scholar 

  • Zachary I, Sinnett-Smith J et al. (1991b) Stimulation of tyrosine kinase activity in anti-phosphotyrosine immune complexes of Swiss 3T3 cell lysates occurs rapidly after addition of bombesin, vasopressin, and endothelin to intact cells. J Biol Chem 266: 24126–24133

    PubMed  CAS  Google Scholar 

  • Zachary I, Sinnett-Smith J et al. (1992) Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. J Biol Chem 267: 19031–19034

    PubMed  CAS  Google Scholar 

  • Zachary Is, Sinnett-Smith J et al. (1993) Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paxillin in Swiss 3T3 cells. J Biol Chem 268:22060–22065

    PubMed  CAS  Google Scholar 

  • Zhang X-F, Komuro T et al. (1998) Role of nonselective cation channels as Ca2+ entry pathway in endothelin-1-induced contraction and their suppression by nitric oxide. Eur J Pharmacol 352:237–245

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Sudol M et al. (1992) Increased tyrosine kinase activity of c-Src during calcium-induced keratinocyte differentiation. Proc Natl Acad Sci 89:8298–8302

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Sucov HM et al. (1995) Retinoid-dependent pathways suppress myocardial cell hypertrophy. Proc Natl Acad Sci 92:7391–7395

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simonson, M.S. (2001). Cell Signaling by Endothelin Peptides. In: Warner, T.D. (eds) Endothelin and Its Inhibitors. Handbook of Experimental Pharmacology, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56899-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56899-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63237-2

  • Online ISBN: 978-3-642-56899-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics