Skip to main content

Biomass Gradients

  • Chapter

Part of the book series: Springer ((SLM))

Abstract

Micro-organisms which are entrapped in gel beads with retention of their viability can subsequently be cultivated. The immobilized cells will thus grow within the support material. They do that by cell division and as a result micro-colonies are formed. Initially the biomass concentration is low. The small colonies that are formed have the same size all over the bead. As the biomass concentration increases, however, effects of diffusion limitation may become important, resulting in non-homogeneous growth of biomass across the beads: near the bead surface larger colonies are formed than in the core of the bead (Gosmann and Rehm 1986, Khang et al. 1988, Wada et al. 1980, Chibata et al. 1983, Wijffels and Tramper 1989). Eventually, the colonies may expand in such a way that they confluence and form a dense internal biofilm (Monbouquette et al. 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c :

correction factor for the Holmes effect [-\

E(D) :

expectation of observed diameter [m\

L :

section thickness [m\

r c :

colony radius [m\

r o :

observed colony radius [m\

R :

bead radius [m\

R c :

distance centre colony of the bead [m\

R t :

radius tesline [m\

References

  • Al-Rubeai, M., Spier, R. (1989) Quantitative cytochemical analysis of immobilized hybridoma cells. Appl. Microbiol. Biotechnol. 31:430–433

    Article  CAS  Google Scholar 

  • Karel, S.F., Robertson, C.R. (1989) Autoradiographic determination of mass-transfer limitations in immobilized cell reactors. Biotechnol. Bioeng. 34:320–336

    Article  PubMed  CAS  Google Scholar 

  • Boross, L., Papp, P. and Szajani, B. Determination of the growth of gel-entrapped microbial cells at various depths of the alginate. In: Physiology of Immobilized Cells (De Bont, J.A.M., Visser, J., Mattiasson, B. and Tramper, J., eds.) Proceedings of an International Symposium held at Wageningen, The Netherlands, 10–13 December 1989. Elsevier Science Publishers B.V., Amsterdam, 1990, 201–204

    Google Scholar 

  • Chevalier P, Cosentino GP, de la Noüe J, Rakhit S (1987) Comparative study on the diffusion of an IgG from various hydrogel beads. Biotechnol Techniques 1:201–206

    Article  CAS  Google Scholar 

  • Chibata, I., Tosa, T. and Fujimura, F. (1983) Immobilized living microbial cells. In: Tsao, G.T. (ed.) Annual Reports on Fermentation Processes, vol. 6. Academic Press, London, p. 1–22

    Google Scholar 

  • Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G., Welch, R.P. (1984). Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10:179–185

    Article  Google Scholar 

  • Gosmann, B. and Rehm, H.J. (1986) Oxygen uptake of microorganisms entrapped in Ca-alginate. Appl. Microbiol. Biotechnol. 23, 163–167

    Article  CAS  Google Scholar 

  • Hennig A (1969) Fehler der Volumermittlung aus der Flächenrelation in dicken Schnitten (Holmes Effekt). Mikroskopie 25:25–44

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y. (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fda. Stain Technol. 45:115–120

    PubMed  CAS  Google Scholar 

  • Hunik, J.H., Van den Hoogen, M.P., De Boer, W., Smit, M., Tramper, J. (1993). Quantitative determination of the spatial distribution of Nitrosomonas europaea and Nitrobacter agilis cells immobilized in К-carrageenan gel beads by a specific fluorescent-antibody labelling technique. Appl. Environ. Microbiol. 9:1951–1954

    Google Scholar 

  • Hunik, J.H., Bos, C.G., Van den Hoogen, M.P., De Gooijer, CD., Tramper, J. (1994). Coimmobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in К-carrageenan gel beads. Biotechnol. Bioeng. 43:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Hüsken L.E., Tramper J., Wijffels R.H. (1996) Growth and eruption of gel-entrapped microcolonies. In: R.H. Wijffels, R.M. Buitelaar, C. Bucke, J. Tramper (eds.) Immobilized cells: basics and applications. Elsevier Science BV, pp. 336–340

    Google Scholar 

  • Karel, S.F., Robertson, C.R. (1989) Autoradiographic determination of mass-transfer limitations in immobilized cell reactors. Biotechnol. Bioeng. 34:320–336

    Article  PubMed  CAS  Google Scholar 

  • Khang, Y.H., Shankar, H. and Senatore, F. (1988) Modelling the effect of oxygen mass transfer on ß-lactam antibiotic production by immobilized Cephalosporium acremonium. Biotechnol. Lett. 10, 861–866

    Article  CAS  Google Scholar 

  • Kuhn, R.H., Peretti, S.W., Ollis D.F. (1991) Micro fluorimetric analysis of spatial and temporal patterns of immobilized cell growth. Biotechnol. Bioeng. 38:340–352

    Article  PubMed  CAS  Google Scholar 

  • Laanbroek H.J., Gerards S. (1991) Effects of organic manure on nitrification in arable soils. Biol Fertil Soils 12:147–153

    Article  CAS  Google Scholar 

  • Leenen E.J.T.M., Boogert A.A., Van Lammeren A.A.M., Tramper J., Wijffels R.H. (1997) Dynamics of artificially immobilized Nitrosomonas europaea: effect of biomass decay. Biotechnol. Bioeng. 55:630–641

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, J. and Vincent, J.C. Dynamic simulations of cell-bearing membranes: modelling and optimization of bioreactors. European Symposium on Computer Aided Process Engineering 2, 5–7 October 1992, Toulouse, France, Supplement to Computers and Chemical Engineering 17, Pergamon Press, 1992, S221–S226

    Google Scholar 

  • Monbouquette, H.G., Sayles, G.D. and Ollis, D.F. (1990) Immobilized cell biocatalyst activation and pseudo-steady-state behavior: model and experiment. Biotechnol. Bioeng. 35, 609–629

    Article  PubMed  CAS  Google Scholar 

  • Underwood EE. (1972) The stereology of projected images. J Microscopy 95:25–44

    Article  Google Scholar 

  • Van Neerven A.R.W., Wijffels R.H., Zehnder A.J.B. (1990). Scanning electron microscopy of immobilized bacteria in gel beads: a comparative study of fixation methods. Journal of Microbiological Methods 11:157–168

    Article  Google Scholar 

  • Verhagen F.J.M., Laanbroek H.J. (1991) Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Appl Environ Microbiol 57:3255–3263

    PubMed  CAS  Google Scholar 

  • Wada, M., Kato, J. and Chibata, I. (1980) Continuous production of ethanol using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechn. 10, 275–287

    Article  CAS  Google Scholar 

  • Walsh, P.K., Brady, J.M. and Malone, D.M. Determination of the radial distribution of Saccharomyces cerevisiae immobilised in calcium alginate gel beads. Biotechnol. Techn. 1993, 7(6), 435–440

    Article  CAS  Google Scholar 

  • Weibel ER. (1979) Stereological methods 1, Academic Press, London, 415 p

    Google Scholar 

  • Weibel ER. (1980) Stereological methods 2, Academic Press, London, 340 p

    Google Scholar 

  • Wijffels, R.H. and Tramper, J. (1989) Performance of growing Nitrosomonas europaea cells immobilized in К-carrageenan. Appl. Microbiol. Biotechnol. 32, 108–112

    Article  CAS  Google Scholar 

  • Wijffels, R.H., De Gooijer, CD., Kortekaas, S. and Tramper, J. (1991) Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: part 2. model evaluation. Biotechnol. Bioeng. 38:232–240

    Article  PubMed  CAS  Google Scholar 

  • Wijffels R.H., De Gooijer CD., Schepers A.W., Beuling E.E., Mallee L.R., Tramper J. (1995) Growth of immobilized Nitrosomonas europaea: implementation of diffusion limitation over microcolonies. Enzyme and Microbial Technology 17:462–471

    Article  CAS  Google Scholar 

  • Worden, R.M., Berry, L.G. (1992) The one-dimensional biocatalyst, a research tool for in situ analysis of immobilized-cell biocatalysts. Appl. Biochem. Biotechnol. 34/35:487–498

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wijffels, R.H. (2001). Biomass Gradients. In: Wijffels, R.H. (eds) Immobilized Cells. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56891-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56891-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67070-4

  • Online ISBN: 978-3-642-56891-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics