Skip to main content

Micro-Electrodes

  • Chapter
Immobilized Cells

Part of the book series: Springer ((SLM))

Abstract

Microsensors are powerful tools for the determination of local fluxes and the distribution of microbial activity in sediments, microbial mats, biofilms, aggregates and other immobilized cell systems (ICS). Within these structures free convection is hindered, and consequently mass transfer to the cells often limits conversion rates. Determination of the microbial community using microbiological or molecular methods have obvious limitations for predictions of the behavior of the ICS. Firstly, any enumeration method, both the cultivation dependent and molecular methods have biases. Prediction of the behavior of immobilized biomass based on these enumerations are further biased by the unknown species distribution within the ICS. Because of mass transfer resistance the microenvironment in the ICS differs from the bulk medium. Consequently, extrapolation of the system behavior to that of the cells is impossible without knowledge about their microenvironment. Therefore, detection techniques with high spatial resolution are needed, both for microbial species and microbial activity distribution. New tools are molecular analyses of the genetic material, avoiding the bias of cultivation methods, and the use of microelectrodes to determine the chemical composition inside intact ICS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammann, D., Lanter, F. Steiner, R. A., Schulthess, P., Shio, Y. and Simon, W. (1981) Neutral carrier based hydrogen-ion selective microsensor for extra-and intracellular studies. Anal. Chem. 53:2267–2269

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D. and Des Marais, D. J. (1993) Biochemical cycles of carbon, sulfur, and free oxygen in a microbial mat Geochimica Cosmochimica Acta 57:3971–3984

    Article  CAS  Google Scholar 

  • Christensen, B. E. and Characklis, W. G. (1990) Physical and chemical properties of biofilms. In: W. G. Characklis and K. C. Marshall (eds) Biofilms. Wiley and sons, pp 93–130

    Google Scholar 

  • Cohen, Y., Krumbein, W. E. and Shilo, M. (1977) Solar Lake (Sinai) 2 Distribution of photosynthetic microorganisms and primary production. Limnol.Oceanogr. 22:609–619

    Article  CAS  Google Scholar 

  • Damgaard, L. R. and Revsbech, N. P. (1997) A microscale biosensor for methane. Anal. Chem. 69:2262–2267

    Article  PubMed  CAS  Google Scholar 

  • De Beer, D. (1990). University of Amsterdam, Amsterdam.

    Google Scholar 

  • De Beer, D., Glud, A., Epping, E. and Kühl, M. (1997a) A fast responding CO2 microelectrode for profiling sediments, microbial mats and biofilms. Limnology Oceanography 42:1590–1600

    Article  Google Scholar 

  • De Beer, D., Schramm, A., C.M., S. and Kuhl, M. (1997b) A nitrite microsensor for profiling environmental biofilms. Applied Environmental Microbiology 63:973–977

    Google Scholar 

  • De Beer, D. and Sweerts, J. P. R. A. (1989) Measurements of nitrate gradients with an ion-selective microelectrode. Analytica Chimica Acta 219:351–356

    Article  Google Scholar 

  • De Beer, D., Sweerts, J.-P. R. A. and van den Heuvel, J. C. (1991) Microelectrode measurement of ammonium profiles in freshwater sediments FEMS Microbiology Ecology 86:1–6

    Article  Google Scholar 

  • De Beer, D. and Van den Heuvel, J. C. (1988) Response of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta 35:728–730

    Article  PubMed  Google Scholar 

  • De Beer, D., van den Heuvel, J. C. and Ottengraf, S. P. P. (1993) Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Applied Environmental Microbiology 59:573–579

    Google Scholar 

  • De Boer, J. P., Cronenberg, C. C. H., De Beer, D., Van Den Heuvel, J. C, De Mattos, M. J. T. and Neijssel, O. M. (1993) pH and glucose profiles in aggregates of bacillus-laevolacticus. Appl. Environ. Microbiol. 59:2474–2478

    PubMed  Google Scholar 

  • Garcia, H. E. and Gordon, L. I. (1992) Oxygen solubility in seawater: better fitting equations Limnol. Oceanogr. 37:1307–1312

    Article  CAS  Google Scholar 

  • Hartley, A. M., House, W. A., Leadbeater, B. S. C. and Callow, M. E. (1996) The use of microelectrodes to study the precipitation of calcite upon algal biofilms. J. Coll. Interfac. Sci. 183:498–505

    Article  CAS  Google Scholar 

  • Hinke, J. (1969) Glass microelectrodes for the study of binding and compartmentalisation of intracellular ions. In: M. Lavallee, O. F. Schanne and N. C. Herbert (eds) Glass microelectrodes. Wiley, pp 349–375

    Google Scholar 

  • Jensen, K., Revsbech, N. P. and Nielsen, L. P. (1993) Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl. Environm. Microbiol. 59:3287–3296

    CAS  Google Scholar 

  • Jensen, K., Sloth, N. P., Risgaard-Petersen, N., Rysgaard, S. and Revsbech, N. P. (1994) Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl. Environm. Microbiol. 60:2064–2100

    Google Scholar 

  • Jeroschewski, P., Steukart, C. and Kühl, M. (1996) An amperometric microsensor for the determination of H2S in aquatic environments. Anal.Chem. 68:4351–4357

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. and Cohen, Y. (1977) Solar Lake (Sinai) 5 The sulfur cycle of the bentic cyanobacterial mats 657–666

    Google Scholar 

  • Kühl, M. and Jørgensen, B. B. (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environm. Microbiol. 58:1164–1174

    Google Scholar 

  • Kühl, M., Steuchart, C, Eickert, G. and Jeroschewski, P. (1998) A H2S microsensor for profiling biofilms and sediments: Application in an acidic lake sediment. Aquat. Microb. Ecol. 15:201–209

    Article  Google Scholar 

  • Larsen, L. H., Kjaer, T. and Revsbech, N. P. (1997) A microscale NO3 - biosensor for environmental applications. Anal. Chem. 69:3527–3531

    Article  PubMed  CAS  Google Scholar 

  • Larsen, L. H., Revsbech, N. and Binnerup, S. J. (1996) A microsensor for nitrate based on immobilized denitrifying bacteria. Appl. Environm. Microbiol. 62:148–1251

    Google Scholar 

  • Lens, P., de Beer, D., Cronenberg, C, Ottengraf, S. P. P. and Verstraete, W. (1995) The use of microsensors to determine population distributions in UASB aggregates. Wat. Sci. Technol. 31:273–280

    CAS  Google Scholar 

  • Lens, P., de Beer, D., Cronenberg, C. C. H., Houwen, F. P., Ottengraf, S. P. P. and Verstraete, W. (1994) Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose microprofiles. Appl. Environm. Microbiol. 59:3803–3815

    Google Scholar 

  • McConnaughey, T., D. and Falk, R. H. (1991) Calcium proton exchange during algal calcification. Biol. Bull. 180:185–195

    Article  Google Scholar 

  • Revsbech, N. P. (1989) An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 55:1907–1910

    Google Scholar 

  • Revsbech, N. P. (1994) Analysis of microbial mats by use of electrochemical microsensors: recent advances. In: L. Stal and P. Caumette (eds) Microbial mats. Springer Verlag, pp 135–147

    Chapter  Google Scholar 

  • Revsbech, N. P. and Jørgensen, B. B. (1983) Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method. Limnol. Oceanogr. 28:749–756

    Article  Google Scholar 

  • Revsbech, N. P. and Jørgensen, B. B. (1986) Microelectrodes: their use in microbial ecology. Adv.Microbial Ecol. 9:293–352

    Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H. and Cohen, Y. (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28:1062–1074

    Article  Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B. and Brix, O. (1981) Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 -fixation, and oxygen exchange methods Limnol.Oceanogr. 26:717–730

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Madsen, B. and Jørgensen, B. B. (1986) Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data Limnology and Oceanography 31:293–304

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Nielsen, L. P., Christensen, P. B. and Sorensen, J. (1988) A combined oxygen and nitrous oxide microsensor for denitrification studies. Appl. Environ. Microbiol. 45:2245–2249

    Google Scholar 

  • Revsbech, N. P. and Ward, D. M. (1983) Oxygen microelectrode that is insensitive to medium chemical composition: Use in an acid microbial mat dominated by Cyanidium caldarum. Appl. Environ. Microbiol. 45:755–759

    PubMed  CAS  Google Scholar 

  • Sweerts, J.-P. R. A., Bar-Gillisen, M. J., Cornelise, A. A. and Cappenberg, T. E. (1991) Oxygen consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (lake Vechten, the Netherlands) Limnology and Oceanography 36:1124–1133

    Article  CAS  Google Scholar 

  • Sweerts, J.-P. R. A. and de Beer, D. (1989) Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (lake Vechten, The Netherlands). Applied Environmental Microbiology 55:754–757

    CAS  Google Scholar 

  • Ullman, W. J. and Aller, R. C. (1982) Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27:552–556

    Article  CAS  Google Scholar 

  • Wijffels, R. H., Eekhof, M. R, de Beer, D., van den Heuvel, J. C. and Tramper, J. (1995) Pseudo-steady state oxygen-concentration profiles in an agar slab containing growing Nitrobacter agilis. J. Fermentation & Biotech 79:167–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Beer, D. (2001). Micro-Electrodes. In: Wijffels, R.H. (eds) Immobilized Cells. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56891-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56891-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67070-4

  • Online ISBN: 978-3-642-56891-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics