Advertisement

Neurofibromatosen

  • Winfrid Krone
  • Hildegard Kehrer-Sawatzki
Part of the Molekulare Medizin book series (MOLMED)

Zusammenfassung

Die Neurofibromatosen gehören zu einer Gruppe von etwa 25 Tumordispositionskrankheiten, denen konstitutionelle Heterozygotie für Mutationen an Tumorsuppressorgenen zugrunde liegt. Allen diesen Krankheiten ist hohe Komplexität sowohl ihrer Manifestationsformen als auch der verursachenden Mechanismen auf zellbiologischer, biochemischer und molekulargenetischer Ebene gemeinsam. Ihre phänotypische Manifestation ist durch ausgeprägte variable Expressivität gekennzeichnet. Eindeutige Genotyp-Phänotyp-Korrelationen sind deshalb nur selten nachweisbar. Auf molekularer Ebene besteht die Komplexität v.a. in den vernetzten Reaktions-kaskaden der Signaltransduktion und in der multifaktoriellen Tumorgenese. Obwohl während des vergangenen Jahrzehnts bedeutende Fortschritte im Verständnis der Pathogenese der Neurofibromatosen gemacht wurden, sind wir von einer lückenlosen und eindeutigen kausalen Erklärung der Krankheitsbilder noch weit entfernt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Monografien

  1. Cooper DN, Krawczak M (1994) Human gene mutation. BIOS Scientific Pubi, OxfordGoogle Scholar
  2. Crowe FW, Schull WJ, Neel JV (1956) A clinical, pathological, and genetic study of multiple neurofibromatosis. Thomas, SpringfieldGoogle Scholar
  3. Friedman JM, Gutmann DH, MacCollin M, Riccardi VM (1999) Neurofibromatosis, 3rd edn. The John Hopkins University Press, BaltimoreGoogle Scholar
  4. Huson SM, Hughes RAC (1994) The neurofibromatoses. Chapman & Hall Medical, LondonGoogle Scholar
  5. Köhler B (1990) Neurofibromatose im Kindesalter. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  6. Riccardi VM (1992) Neurofibromatosis: phenotype, natural history and pathogenesis, 2nd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  7. Riccardi VM, Eichner JE (1986) Neurofibromatosis, 1st edn. John Hopkins University Press, BaltimoreGoogle Scholar
  8. Riccardi VM, Mulvihill JJ, Wade WM (eds) (1981) Neurofibromatosis (Von Recklinghausen disease). Adv Neurol 29:1–282Google Scholar
  9. Rubenstein AE, Korf BR (1990) Neurofibromatosis, a handbook for patients, families, and health-care professionals. Thieme, Stuttgart New YorkGoogle Scholar
  10. Rubenstein AE, Bunge RP, Housman DE (eds) (1986) Neurofibromatosis. Ann N Y Acad Sci 486:1–414Google Scholar
  11. Upadhyaya M, Cooper DN (1998) Neurofibromatosis type 1; from genotype to phenotype. Bios Scientific Pubi, Oxford, Washington DCGoogle Scholar

Zitierte Literatur

  1. Abeliovich D, Gelman-Kohan Z, Silverstein S et al. (1995) Familial café-au-lait spots: a variant of neurofibromatosis type 1. J Med Genet 32:985–986PubMedCrossRefGoogle Scholar
  2. Ahlgren-Beckendorf JA, Maggio WW, Chen F, Kent TA (1993) Neurofibromatosis 1 mRNA expression in blood vessels. Biochem Biophys Res Commun 197:1019–1024PubMedCrossRefGoogle Scholar
  3. Ahmadian MR, Wiesmüller L, Lautwein A, Bischoff FR, Wittinghofer A (1996) Structural differences in the minimal catalytic domains of the GTPase-activating proteins pl20GAP and neurofibromin. J Biol Chem 271:16.409–16.415Google Scholar
  4. Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A (1997) Confirmation of the arginine finger hypothesis for the GAP stimulated GTP hydrolysis reaction of Ras. Nat Struct Biol 4:686–689PubMedCrossRefGoogle Scholar
  5. Ahn MS, Jackler RK, Lustig LR (1996) The early history of the neurofibromatoses. Evolution of the concept of neurofibromatosis type 2. Arch Otolaryngol Head Neck Surg 122:1240–1249PubMedCrossRefGoogle Scholar
  6. Ainsworth PJ, Chakraborty PK, Weksberg R (1997) Example of somatic mosaicism in a series of de novo neurofibromatosis type 1 cases due to a maternally derived deletion. Hum Mutat 9:452–457PubMedCrossRefGoogle Scholar
  7. Akagi K, Kurahashi H, Arita N et al. (1995) Deletion mapping of the long arm of chromosome 22 in human meningiomas. Int J Cancer 60:178–182PubMedCrossRefGoogle Scholar
  8. Alexander CM, Hansell EJ, Behrendtsen O et al. (1996) Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122:1723–1736PubMedGoogle Scholar
  9. Allanson JE, Upadhyaya M, Watson GH et al. (1991) Watson syndrome: is it a subtype of type 1 neurofibromatosis? J Med Genet 28:752–756PubMedCrossRefGoogle Scholar
  10. Andersen LB, Fountain JW, Gutmann DH et al. (1993 a) Mutations in the neurofibromatosis 1 gene in sporadic malignant melanoma cell lines. Nat Genet 3:118–121PubMedCrossRefGoogle Scholar
  11. Andersen LB, Ballester R, Marchuk DA et al. (1993 b) A conserved alternative splice in the von Recklinghausen neurofibromatosis (NF1) gene produces two neurofibromin isoforms, both of which have GTPase activating protein activity. Mol Cell Biol 13:487–495PubMedGoogle Scholar
  12. Andrews JD, Mancini DN, Singh SM, Rodenhiser DI (1996) Site and sequence specific DNA methylation in the neurofibromatosis (NF1) gene includes C5839T: the site of the recurrent substitution mutation in exon 31. Hum Mol Genet 5:503–507PubMedCrossRefGoogle Scholar
  13. Antinheimo J, Sankila R, Carpen O, Pukkala E, Sainio M, Jaaskelainen J (2000) Population-based analysis of sporadic and type 2 neurofibromatosis-associated meningiomas and schwannomas. Neurology 54:71–76PubMedCrossRefGoogle Scholar
  14. Arai E, Ikeuchi T, Nakamura Y (1994) Characterization of the translocation breakpoint on chromosome 22ql2.2 in a patient with neurofibromatosis type 2 (NF2). Hum Mol Genet 3:937–939PubMedCrossRefGoogle Scholar
  15. Arakawa H, Hayashi N, Nagase H, Ogawa M, Nakamura Y (1994) Alternative splicing of the NF2 gene and its mutation analysis of breast and colorectal cancers. Hum Mol Genet 3:565–568PubMedCrossRefGoogle Scholar
  16. Arinami T, Kondo I, Hamaguchi H, Nakajima S (1986) Multifocal meningiomas in a patient with a constitutional ring chromosome 22. J Med Genet 23:178–180PubMedCrossRefGoogle Scholar
  17. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:931–936PubMedCrossRefGoogle Scholar
  18. Ars E, Kruyer H, Gaona A et al. (1998) A clinical variant of neurofibromatosis type 1: familial spinal neurofibromatosis with a frameshift mutation in the NF1 gene. Am J Hum Genet 62:834–841PubMedCrossRefGoogle Scholar
  19. Ars E, Serra E, Garcia J et al. (2000) Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 9:237–247PubMedCrossRefGoogle Scholar
  20. Atit RP, Crowe MJ, Greenhalgh DG, Wenstrup RJ, Ratner N (1999) The NF1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol 112:835–842PubMedCrossRefGoogle Scholar
  21. Bahuau M, Houdayer C, Assouline B et al. (1998) Novel recurrent nonsense mutation causing neurofibromatosis type 1 (NF1) in a family segregating both NF1 and Noonan syndrome. Am J Med Genet 75:265–272PubMedCrossRefGoogle Scholar
  22. Ballester RM, Marchuk D, Boguski M et al. (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859PubMedCrossRefGoogle Scholar
  23. Barber CK, Cross IE, Douglas F, Nicholson JC, Moore KJ, Browne CE (1998) Neurofibromatosis pseudogene amplification underlies euchromatic cytogenetic duplications and triplications of proximal 15q. Hum Genet 103:600–607PubMedCrossRefGoogle Scholar
  24. Barker D, Wright E, Nguyen K et al. (1987 a) A genomic search for linkage of neurofibromatosis to RFLPs. J Med Genet 24:536–538PubMedCrossRefGoogle Scholar
  25. Barker D, Wright E, Nguyen K et al. (1987 b) Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science 236:1100–1102PubMedCrossRefGoogle Scholar
  26. Barlett Bunge M, Wood PM, Tynan LB, Bates ML, Sanes JR (1989) Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker. Science 243:229–231CrossRefGoogle Scholar
  27. Baser ME, Ragge NK, Riccardi VM, Janus T, Gantz B, Pulst SM (1996) Phenotypic variability in monozygotic twins with neurofibromatosis 2. Am J Med Genet 64:563–567PubMedCrossRefGoogle Scholar
  28. Baser ME, Kluwe L, Mautner VF (1999) Germ-line NF2 mutations and disease severity in neurofibromatosis type 2 patients with retinal abnormalities. Am J Hum Genet 64:1230–1233PubMedCrossRefGoogle Scholar
  29. Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J (1992) Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:713–715PubMedCrossRefGoogle Scholar
  30. Baylin SB, Herman JG, Graff JR, Vertina PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196PubMedCrossRefGoogle Scholar
  31. Bello MJ, Campos JM de, Kusak ME et al. (1994) Allelic loss at lp is associated with tumor progression of meningiomas. Genes Chromosomes Cancer 9:296–298PubMedCrossRefGoogle Scholar
  32. Bernards A (1998) Evolutionary comparisons. In: Upadhyaya M, Cooper DN (eds) Neurofibromatosis type 1: from genotype to phenotype. BIOS Scientific Pubi, Oxford, pp 175–186Google Scholar
  33. Bernards A, Snijders AJ, Hannigan GE, Murthy AE, Gusella JF (1993) Mouse neurofibromatosis type 1 cDNA sequence reveals high degree of conservation of both coding and non-coding mRNA segments. Hum Mol Genet 2:645–650PubMedCrossRefGoogle Scholar
  34. Berner JM, Sorlie T, Mertens F et al. (1999) Chromosome band 9p21 is frequently altered in malignant peripheral nerve sheath tumors: studies of CDKN2A and other genes of the pRB pathway. Genes Chromosomes Cancer 26:151–160PubMedCrossRefGoogle Scholar
  35. Bianchi AB, Hara T, Ramesh V et al. (1994) Mutations in transcript isoforms of the neurofibromatosis 2 gene in multiple human tumour types. Nat Genet 6:185–192PubMedCrossRefGoogle Scholar
  36. Bianchi AB, Mitsunaga S-I, Cheng JQ et al. (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA 92:10.854–10.858CrossRefGoogle Scholar
  37. Bijlsma EK, Wallace AJ, Evans DG (1997) Misleading linkage results in an NF2 presymptomatic test owing to mosaicism. J Med Genet 34:934–936PubMedCrossRefGoogle Scholar
  38. Birch BD, Johnson JP, Parsa A et al. (1996) Frequent type 2 neurofibromatosis gene transcript mutations in sporadic intramedullary spinal cord ependymomas. Neurosurgery 39:135–140PubMedCrossRefGoogle Scholar
  39. Boeddrich A, Griesser J, Horn D, Kaufmann D, Krone W, Nürnberg P (1995) Reduced neurofibromin content but normal GAP activity in a patient with neurofibromatosis type 1 caused by a five base pair duplication in exon 12b of the NF1 gene. Biochem Biophys Res Commun 214:895–904CrossRefGoogle Scholar
  40. Boeddrich A, Robinson PN, Schülke M, Buske A, Tinschert S, Nürnberg P (1997) New evidence for a mutation hotspot in exon 37 of the NF1 gene. Hum Mutat 9:374–377CrossRefGoogle Scholar
  41. Bollag G, McCormick F (1991) Differential regulation of ras-GAP and neurofibromatosis gene product activities. Nature 351:576–579PubMedCrossRefGoogle Scholar
  42. Bollag G, McCormick F, Clark R (1993) Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. EMBO J 12:1923–1927PubMedGoogle Scholar
  43. Bollag G, Clapp DW, Shih S et al. (1996) Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12:144–148PubMedCrossRefGoogle Scholar
  44. Borasio GD, John J, Wittinghofer A, Barde YA, Sendtner M, Heumann R (1989) Ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2:1087–96PubMedCrossRefGoogle Scholar
  45. Borovich B, Doron Y, Braun J et al. (1988) The incidence of multiple meningiomas — do solitary meningiomas exist? Acta Neurochir (Wien) 90:15–22CrossRefGoogle Scholar
  46. Bos JL (1988) The ras gene family and human carcinogenesis. Mutat Res 195:255–271PubMedCrossRefGoogle Scholar
  47. Bottema CDK, Ketterling RP, Ii S, Yoon H-S, Philips JA, Sommer SS (1991) Missense mutations and evolutionary conservation of amino acids: evidence that many of the amino acids in factor IX function als „spacer elements“. Am J Hum Genet 49:820–838PubMedGoogle Scholar
  48. Bourn D, Carter SA, Mason S, Gareth D, Evans R, Strachan T (1994) Germline mutations in the neurofibromatosis type 2 tumour suppressor gene. Hum Mol Genet 3:813–816PubMedCrossRefGoogle Scholar
  49. Bourne HR (1997) The arginine finger strikes again. Nature 389:673–674PubMedCrossRefGoogle Scholar
  50. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127PubMedCrossRefGoogle Scholar
  51. Boveri Th (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, JenaGoogle Scholar
  52. Boyer MJ, Gutmann DH, Collins FS, Bar-Sagi, D (1994) Crosslinking of the surface immunoglobulin receptor in B lymphocytes induces a redistribution of neurofibromin but not pl20-GAP. Oncogene 9:349–357PubMedGoogle Scholar
  53. Brannan CI, Perkins AS, Vogel KS et al. (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029PubMedCrossRefGoogle Scholar
  54. Bretscher A, Reczek D, Berryman M (1997) Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J Cell Sci 110:3011–3018PubMedGoogle Scholar
  55. Brockes JP, Breakefield XO, Martuza RL (1986) Glial growth factor-like activity in Schwann cell tumors. Ann Neurol 220:317–322CrossRefGoogle Scholar
  56. Bruder CE, Ichimura K, Blennow E et al. (1999) Severe phenotype of neurofibromatosis type 2 in a patient with a 7.4-MB constitutional deletion on chromosome 22: possible localization of a neurofibromatosis type 2 modifier gene? Genes Chromosomes Cancer 25:184–190PubMedCrossRefGoogle Scholar
  57. Brunner HG, Hulsebos T, Steijlen PM, Rinderen DG der, Steen AVD (1993) Exclusion of the neurofibromatosis locus in a family with inherited café-au-lait spots. Am J Med Genet 46:472–474PubMedCrossRefGoogle Scholar
  58. Buchberg AM, Cleveland LS, Jenkins NA, Copeland NG (1990 a) Sequence homology shared by neurofibromatosis type-1 gene and IRA-1 and IRA-2 negative regulators of the RAS cyclic AMP pathway. Nature 347:291–294PubMedCrossRefGoogle Scholar
  59. Buchberg AM, Bedigian HG, Jenkins NA, Copeland NF (1990 b) Evi-2, a common integration site involved in murine myeloid leukemogenesis. Mol Cell Biol 10:4658–4666PubMedGoogle Scholar
  60. Burke TW, Kadonaga JT (1996) Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 110:711–724CrossRefGoogle Scholar
  61. Cameron EE, Baylin SB, Herman JG (1999) pl5INK4B CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94:2445–2451PubMedGoogle Scholar
  62. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17:1395–1413PubMedCrossRefGoogle Scholar
  63. Cappione AJ, French BL, Skuse GR (1997) A potential role for NF1 mRNA editing in the pathogenesis of NF1 tumors. Am J Hum Genet 60:305–312PubMedGoogle Scholar
  64. Carey JC (1998) Neurofibromatosis-Noonan syndrome. Am J Med Genet 75:263–264PubMedCrossRefGoogle Scholar
  65. Carey JC, Viskochil DH (1999) Neurofibromatosis type 1: a model condition or the study of the molecular basis of variable expressivity in human disorders. Am J Med Genet 89:7–13PubMedCrossRefGoogle Scholar
  66. Carlson KM, Bruder C, Nordenskjold M, Dumanski JP (1997) lp and 3p deletions in meningiomas without de-5 Neurofibromatosen 219 tectable aberrations of chromosome 22 identified by comparative genomic hybridization. Genes Chromosomes Cancer 20:419–424PubMedCrossRefGoogle Scholar
  67. Casalone R, Granata P, Simi P et al. (1987) Recessive cancer genes in meningiomas? An analysis of 31 cases. Cancer Genet Cytogenet 27:145–59PubMedCrossRefGoogle Scholar
  68. Castresana JS, Gomez L, Gamallo C et al. (1995) The status of the NF1 GRD mutation and p53 expression in neuroblastoma. Int J Oncol 7:755–757PubMedGoogle Scholar
  69. Cavenee WK, Dryja TP, Phillips RA et al. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784PubMedCrossRefGoogle Scholar
  70. Cawthon RM, O'Connell P, Buchberg AM et al. (1990 a) Identification and characterization of transcripts from the neurofibromatosis 1 region: the sequence and genomic structure of EVI2 and mapping of other transcripts. Genomics 7:555–65PubMedCrossRefGoogle Scholar
  71. Cawthon RM, Weiss R, Xu G, Viskochil D et al. R (1990 b) A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 62:193–201PubMedCrossRefGoogle Scholar
  72. Cawthon RM, Andersen LB, Buchberg AM et al. (1991) cDNA sequence and genomic structure of EV12B, a gene lying within an intron of the neurofibromatosis type 1 gene. Genomics 9:446–460PubMedCrossRefGoogle Scholar
  73. Charrow J, Listernick R, Ward K (1993) Autosomal dominant multiple café-au-lait spots and neurofibromatosis. Am J Med Genet 45:606–608PubMedCrossRefGoogle Scholar
  74. Chiba-Falek O, Kerem E, Shoshani T et al. (1998) The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10 kb C»T mutation. Genomics 53:276–2283PubMedCrossRefGoogle Scholar
  75. Christian JL, Nakayama T (1999) Can't get no SMA disfaction: smad proteins as positive and negative regulators of TGF-β family signals. Bioessays 21:382–390PubMedCrossRefGoogle Scholar
  76. Cichowski K, Shih TS, Schmitt E et al. (1999) Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172–2176PubMedCrossRefGoogle Scholar
  77. Clark MB, Zeheb R, White TK, Bunge RP (1991) Schwann cell plasminogen activator is regulated by neurons. Glia 4:514–528PubMedCrossRefGoogle Scholar
  78. Clark SJ, Harrison J, Molloy PL (1997) Spi binding is inhibited by mCpmCpG methylation. Gene 195:65–71CrossRefGoogle Scholar
  79. Claudio JO, Marineau C, Rouleau GA (1994) The mouse homologue of the neurofibromatosis type 2 gene is highly conserved. Hum Mol Genet 3:185–190PubMedCrossRefGoogle Scholar
  80. Claudio JO, Lutchman M, Rouleau GA (1995) Widespread but cell type specific expression of the mouse neurofibromatosis type 2 gene. Neuroreport 6:1942–1946PubMedCrossRefGoogle Scholar
  81. Collins FS, Ponder BAJ, Seizinger BR, Epstein DJ (1989) The von Recklinghausen neurofibromatosis region on chromosome 17 — genetic and physical maps come into focus. Am J Hum Genet 44:1–5PubMedGoogle Scholar
  82. Coiman SD, Williams CA, Wallace MR (1995) Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet 11:90–92CrossRefGoogle Scholar
  83. Colman SD, Rasmussen SA, Ho VT, Abernathy CR, Wallace MR (1996) Somatic mosaicism in a patient with neurofibromatosis type 1. Am J Hum Genet 58:484–490PubMedGoogle Scholar
  84. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679–694PubMedCrossRefGoogle Scholar
  85. Cook SJ, McCormick F (1993) Inhibition by cAMP of Rasdependent activation of Raf. Science 262:1069–1072PubMedCrossRefGoogle Scholar
  86. Corvera S, Czech MP (1998) Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol 8:442–446PubMedCrossRefGoogle Scholar
  87. Crowe FW, Schull WJ (1953) Diagnostic importance of the cafe au lait spot in neurofibromatosis. Arch Intern Med 91:758–766CrossRefGoogle Scholar
  88. Cummings LM, Trent JM, Marchuk DA (1996) Identification and mapping of type 1 neurofibromatosis (NF1) homologous loci. Cytogenet Cell Genet 73:334–340PubMedCrossRefGoogle Scholar
  89. Danglot G, Régnier V, Fauvet D et al. (1995) Neurofibromatosis 1 (NF1) mRNAs expressed in the central nervous system are differentially spliced in the 5′ part of the gene. Hum Mol Genet 4:915–920PubMedCrossRefGoogle Scholar
  90. Darby JK, Feder J, Selby M et al. (1985) A discordant sibship analysis between β-NGF and neurofibromatosis. Am J Hum Genet 37:52–59PubMedGoogle Scholar
  91. Däschner K, Assum G, Eisenbarth E et al. (1997) Clonal origin of tumor cells in a plexiform neurofibroma with LOH in NF1 intron 38 and in dermal neurofibromas without LOH of the NF1 gene. Biochem Biophys Res Commun 234:346–350PubMedCrossRefGoogle Scholar
  92. Daston MM, Ratner N (1992) Neurofibromin, a predominantly neuronal GTPase activating protein in the adult, is ubiquitously expressed during development. Dev Dyn 195:216–226PubMedCrossRefGoogle Scholar
  93. Daston MM, Scrable H, Nordlund M, Sturbaum AK, Nissen LM, Ratner N (1992) The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells, and oligodendrocytes. Neuron 8:415–428PubMedCrossRefGoogle Scholar
  94. Decker HJ, Cannizzaro LA, Mendez MJ et al. (1990) Chromosomes 17 and 22 involved in marker formation in neurofibrosarcoma in von Recklinghausen disease. A cytogenetic and in situ hybridization study. Hum Genet 85:337–342PubMedCrossRefGoogle Scholar
  95. DeClue JE, Cohen BD, Lowy DR (1991) Identification and characterization of the neurofibromatosis type 1 protein product. Proc Natl Acad Sci USA 88:9914–9918PubMedCrossRefGoogle Scholar
  96. DeClue JE, Papageorge AG, Fletcher JA et al. (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (typel) neurofibromatosis. Cell 69:265–273PubMedCrossRefGoogle Scholar
  97. DeClue JE, Heffelfinger S, Benvenuto G et al. (2000) Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J Clin Invest 105:1233–1241PubMedCrossRefGoogle Scholar
  98. Deguen B, Merel P, Goutebroze L et al. (1998) Impaired interaction of naturally occurring mutant NF2 protein with actin-based cytoskeleton and membrane. Hum Mol Genet 7:217–226sPubMedCrossRefGoogle Scholar
  99. Den Bakker MA, Riegman PHJ, Hekman RACP et al. (1995 a) The product of the NF2 tumour suppressor gene localizes near the plasma membrane and is highly expressed in muscle cells. Oncogene 10:757–763Google Scholar
  100. Den Bakker MA, Tascilar M, Riegman PH et al. (1995 b) Neurofibromatosis type 2 protein co-localizes with elements of the cytoskeleton. Am J Pathol 147:1339–1349Google Scholar
  101. De Vitis LR, Tedde A, Vitelli F et al. (1996 a) Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97:632–637PubMedCrossRefGoogle Scholar
  102. De Vitis LR, Tedde A, Vitelli F et al. (1996 b) Analysis of the neurofibromatosis type 2 gene in different human tumors of neuroectodermal origin. Hum Genet 97:638–641PubMedCrossRefGoogle Scholar
  103. Dhanasekaran N, Tsim S-T, Dermott JM, Onesime D (1998) Regulation of cell proliferation by G proteins. Oncogene 17:1383–1394PubMedCrossRefGoogle Scholar
  104. DiPaolo DP, Zimmermann RA, Rorke LB, Zackai EH, Bilaniuk LT, Yachnis AT (1995) Neurofibromatosis type 1: pathologic substrate of high-signal-intensity foci in the brain. Radiology 195:721–724PubMedGoogle Scholar
  105. Doi Y, Itoh M, Yonemura S et al. (1999) Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J Biol Chem 274:2315–2321PubMedCrossRefGoogle Scholar
  106. Dorschner MO, Sybert VP, Weaver M, Pletcher BA, Stephens K (2000) NF1 microdeletion breakpoints are clustered at flanking repetitive sequences. Hum Mol Genet 9:35–46PubMedCrossRefGoogle Scholar
  107. Dumanski JP, Carlbom E, Collins VP, Nordenskjold M (1987) Deletion mapping of a locus on human chromosome 22 involved in the oncogenesis of meningioma. Proc Natl Acad Sci USA 84:9275–9279PubMedCrossRefGoogle Scholar
  108. Duve S, Rakoski J (1994) Cutaneous melanoma in a patient with neurofibromatosis: a case report and review of the literature. Br J Dermatol 131:290–294PubMedCrossRefGoogle Scholar
  109. Easton DF, Ponder MA, Huson SM, Ponder BAJ (1993) An analysis of variation in expression of neurofibromatosis type 1: evidence for modifying genes. Am J Hum Genet 53:305–313PubMedGoogle Scholar
  110. Ebert C, Haken M von, Meyer-Puttlitz B et al. (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632PubMedCrossRefGoogle Scholar
  111. Eisenbarth I, Assum G, Kaufmann D, Krone W (1997) Evidence for the presence of the second allele of the neurofibromatosis type 1 gene in melanocytes derived from cafe au lait macules of NF1 patients. Biochem Biophys Res Commun 237:138–141PubMedCrossRefGoogle Scholar
  112. Eisenbarth I, Beyer K, Krone W, Assum G (2000 a) Toward a survey of somatic mutation of the NF1 gene in benign neurofibromas of patients with neurofibromatosis type 1. Am J Hum Genet 66:393–401PubMedCrossRefGoogle Scholar
  113. Eisenbarth I, Vogel G, Krone W, Vogel W, Assum G (2000 b) An isochore transition in the NF1 gene coincides with a switch in the extent of linkage disequilibrium. Am J Hum Genet 67:873–880PubMedCrossRefGoogle Scholar
  114. Eldridge R, Denckla MB, Bien E et al. (1989) Neurofibromatosis type 1 (Recklinghausen’s disease). Neurologic and cognitive assessment with sibling controls. Am J Dis Child 143:833–837PubMedGoogle Scholar
  115. Evans DG, Huson SM, Donnai D et al. (1992 a) A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet 29:841–846PubMedCrossRefGoogle Scholar
  116. Evans DG, Huson SM, Donnai D et al. (1992b) A clinical study of type 2 neurofibromatosis. QJM 84:603–618PubMedGoogle Scholar
  117. Evans DG, Ramsden R, Huson SM, Harris R, Lye R, King TT (1993) Type 2 neurofibromatosis: the need for supraregional care? J Laryngol Otol 107:401–406PubMedCrossRefGoogle Scholar
  118. Evans DG, Blair V, Strachan T, Lye RH, Ramsden RT (1995) Variation of expression of the gene for type 2 neurofibromatosis: absence of a gender effect on vestibular schwannomas, but confirmation of a preponderance of meningiomas in females. J Laryngol Otol 109:830–835PubMedCrossRefGoogle Scholar
  119. Evans DG, Trueman L, Wallace A, Collins S, Strachan T (1998 a) Genotype/phenotype correlations in type 2 neurofibromatosis (NF2): evidence for more severe disease associated with truncating mutations. J Med Genet 35:450–455PubMedCrossRefGoogle Scholar
  120. Evans DG, Wallace AJ, Wu CL, Ramsden RT, Strachan T (1998 b) Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am J Hum Genet 63:727–736PubMedGoogle Scholar
  121. Fahsold R, Hoffmeyer S, Mischung C et al. (2000) Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 66:790–818PubMedCrossRefGoogle Scholar
  122. Fairbank (1994) Orthopaedic manifestation in neurofibromatosis. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman Drosophila homologues of the human neurofibromatosis 2 and yeast CDC42 genes using a simple and efficient reverse-genetic method. Genetics 146:245–252Google Scholar
  123. Feigenbaum L, Fujita K, Collins FS, Jay G (1996) Repression of the NF1 gene by tax may explain the development of neurofibromas in human T-lymphotropic virus type 1 transgenic mice. J Virol 70:3280–3285PubMedGoogle Scholar
  124. Feldmann P, Eicher EN, Leevers SH, Hafen E, Hughes DA (1999) Control of growth and differentiation by Drosophila RasGAP, a homolog of pi20 Ras-GTPase-activation protein. Mol Cell Biol 19:1928–1937PubMedGoogle Scholar
  125. Feldkamp MM, Lau N, Provias JP, Gutmann DH, Guha A (1996) Acute presentation of a neurogenic sarcoma in a patient with neurofibromatosis type 1: a pathological and molecular explanation. J Neurosurg 84:867–873PubMedCrossRefGoogle Scholar
  126. Ferner RE (1994 a) Medical complications of neurofibromatosis 1. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman 8c Hall, London New York, pp 316–330Google Scholar
  127. Ferner RE (1994 b) Intellect in neurofibromatosis 1. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman & Hall, London New York, pp 233–252Google Scholar
  128. Ferner RE, Hughes RA, Weinman J (1996) Intellectual impairment in neurofibromatosis 1. J Neurol Sci 138:125–133PubMedCrossRefGoogle Scholar
  129. Fialkow PJ, Sagebiel RW, Gartier SM, Rimoin DL (1971) Multiple cell origin of hereditary neurofibromas. N Engl J Med 284:298–300PubMedCrossRefGoogle Scholar
  130. Fleischmajer R, Timpl R, Dziadek M, Lebwohl M (1985) Basement membrane proteins, intestitial collagens, and fibronectin in neurofibroma. J Invest Dermatol 85:54–59PubMedCrossRefGoogle Scholar
  131. Flueler U, Boltshauser E, Kilchhufer A (1986) Iris hamartoma as diagnostic criterion in neurofibromatosis. Neuropediatrics 17:183–185PubMedCrossRefGoogle Scholar
  132. Foulkes WD, Englefield P, Campbell IG (1994) Mutation analysis of RASK and the „FLR exon“ of NF1 in sporadic ovarian carcinoma. Eur J Cancer 30:528–530CrossRefGoogle Scholar
  133. Frenk E, Schellhorn JP (1969) Zur Morphologie der epidermalen Melanineinheit. Dermatologica 139:271–277PubMedCrossRefGoogle Scholar
  134. Frenk E, Marazzi A (1984) Neurofibromatosis of von Recklinghausen: a quantitative study of the epidermal keratinocyte and melanocyte populations. J Invest Dermatol 83:23–25PubMedCrossRefGoogle Scholar
  135. Friedman JM, Birch P (1997) An association between optic glioma and other tumours of the central nervous system in neurofibromatosis type 1. Neuropediatrics 28:131–132PubMedCrossRefGoogle Scholar
  136. Gamblin SJ, Smerdon SJ (1998) GTPase-activating proteins and their complexes. Curr Opin Struct Biol 8:195–201PubMedCrossRefGoogle Scholar
  137. Gardner WJ, Frazier CH (1930) Bilateral acoustic neurofibromatosis: a clinical study and field survey of a family of five generations with bilateral deafness in thirty-eight members. Arch Neurol Psychol 23:266–302Google Scholar
  138. Gary R, Bretscher A (1995) Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 6:1061–1075PubMedGoogle Scholar
  139. Gideon P, John J, Freeh M et al. (1992) Mutational and kinetic analysis of the GTPase-activating protein (GAP)— p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12:2050–2056PubMedGoogle Scholar
  140. Gilchrest BA, Blog FB, Szabo G (1979) Effects of aging and chronic sun exposure on melanocytes in human skin. I Invest Dermatol 73:141–143CrossRefGoogle Scholar
  141. Giordano MJ, Mahadeo DK, He YY, Geist RT, Hsu C, Gutmann DH (1996) Increased expression of the neurofibromatosis 1 (NF1) gene product, neurofibromin, in astrocytes in response to cerebral ischemia. J Neurosci Res 43:246–253PubMedCrossRefGoogle Scholar
  142. Giovannini M, Robanus-Maandag E, Niwa-Kawakita M et al. (1999) Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 13:978–986PubMedCrossRefGoogle Scholar
  143. Glover TW, Stein CK, Legius E, Andersen LB, Brereton A, Johnson S (1991) Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromosomes Cancer 3:62–70PubMedCrossRefGoogle Scholar
  144. Goldgar DE, Green PH, Parry DM, Mulvihill JJ (1989) Multipoint linkage analysis in neurofibromatosis type 1: an international collaboration. Am J Hum Genet 44:6–12PubMedGoogle Scholar
  145. Golubic M, Tanaka K, Dobrowolski S et al. (1991) The GTPase stimulatory activities of the neurofibromatosis type 1 and the yeast IRA2 proteins are inhibited by arachidonic acid. EMBO J 10:2897–2903PubMedGoogle Scholar
  146. Golubic M, Roudebush M, Dobrowolski S, Wolfman A, Stacey DW (1992) Catalytic properties, tissue and intracellular distribution of neurofibromin. Oncogene 7:2151–2159PubMedGoogle Scholar
  147. Gomez L, Barrios C, Kreicbergs A, Zetterberg A, Pestana A, Castresana JS (1995) Absence of mutation at the GAP-related domain of the neurofibromatosis type 1 gene in sporadic neurofibrosarcomas and other bone and soft tissue sarcomas. Cancer Genet Cytogenet 81:173–174PubMedCrossRefGoogle Scholar
  148. Gomez L, Rubio MP, Martin MT et al. (1996) Chromosome 17 allelic loss and NF1-GRD mutations do not play a significant role as molecular mechanisms leading to melanoma tumorigenesis. J Invest Dermatol 106:432–436PubMedCrossRefGoogle Scholar
  149. Gomi H, Yokoyama T, Fujimoto K et al. (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14:29–41PubMedCrossRefGoogle Scholar
  150. Gonzalez-Agosti C, Xu L, Pinney D et al. (1996) The merlin tumor suppressor localizes preferentially in membrane ruffles. Oncogene 13:1239–1247PubMedGoogle Scholar
  151. Gonzalez-Agosti C, Wiederhold T, Herndon ME, Gusella J, Ramesh V (1999) Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J Biol Chem 274:34.438–34.442CrossRefGoogle Scholar
  152. Goutebroze L, Brault E, Muchardt C, Camonis J, Thomas G (2000) Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol Cell Biol 20:1699–1712PubMedCrossRefGoogle Scholar
  153. Green JE, Baird AM, Hinrichs SH, Klintworth GK, Jay G (1992) Adrenal medullary tumors and iris proliferation in a transgenic mouse model of neurofibromatosis. Am J Pathol 140:1401–1140PubMedGoogle Scholar
  154. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878PubMedGoogle Scholar
  155. Gregory PE, Gutmann DH, Mitchell A et al. (1993) Neurofibromatosis type 1 gene product (neurofibromin) associated with microtubules. Somat Cell Mol Genet 19:265–274PubMedCrossRefGoogle Scholar
  156. Griesser J, Kaufmann D, Eisenbarth I, Bäuerle C, Krone W (1995) Ras-GTP regulation is not altered in cultured melanocytes with reduced levels of neurofibromin derived from patients with neurofibromatosis 1 (NF1). Biol Chem 376:91–101Google Scholar
  157. Griesser J, Kaufmann D, Maier B, Mailhammer R, Kuehl P, Krone W (1997) Post-transcriptional regulation of neurofibromin level in cultured human melanocytes in response to growth factors. J Invest Dermatol 108:275–280PubMedCrossRefGoogle Scholar
  158. Grönholm M, Sainio M, Zhao F, Heiska L, Vaheri A, Carpen O (1999) Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J Cell Sci 112:895–904PubMedGoogle Scholar
  159. Grumbles RM, Shao L, Jeffrey JJ, Howell DS (1997) Regulation of the rat interstitial collagenase promotor by IL-1β, c-Jun, and ras-rependent signaling in growth plate chondrocytes. J Cell Biochem 67:92–102PubMedCrossRefGoogle Scholar
  160. Guha A (1998) Ras activation in astrocytomas and neurofibromas. Can J Neurol Sci 25:267–281PubMedGoogle Scholar
  161. Guha A, Lau N, Huvar I et al. (1996) Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene 12:507–513PubMedGoogle Scholar
  162. Guha A, Feldkamp MM, Lau N, Boss G, Pawson (1997) Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15:2755–2765PubMedCrossRefGoogle Scholar
  163. Guo HF, The I, Hannan F, Bernards A, Zhong Y (1997) Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science 276:795–798PubMedCrossRefGoogle Scholar
  164. Guo HF, Tong J, Hannan F, Luo L, Zhong Y (2000) A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403:895–898PubMedCrossRefGoogle Scholar
  165. Gutkind JS (1998) Cell growth control by G protein-coupled receptors: from signal transduction to signal integration. Oncogene 17:1331–1342PubMedCrossRefGoogle Scholar
  166. Gutmann DH, Andersen LB, Cole JL, Swaroop M, Collins FS (1993 a) An alternatively-spliced mRNA in the carboxy terminus of the neurofibromatosis type 1 (NF1) gene is expressed in muscle. Hum Mol Genet 2:989–992CrossRefGoogle Scholar
  167. Gutmann DH, Tennekoon GI, Cole JL, Collins FS, Rutkowski JL (1993 b) Modulation of the neurofibromatosis type 1 product, neurofibromin, during Schwann cell differentiation. J Neurosci Res 36:216–223PubMedCrossRefGoogle Scholar
  168. Gutmann DH, Cole JL, Collins FS (1994 a) Modulation of neurofibromatosis type 1 gene expression during in vitro myoblast differentiation. J Neurosci Res 37:398–405PubMedCrossRefGoogle Scholar
  169. Gutmann DH, Cole J, Stone W, Ponder BAJ, Collins FS (1994b) Loss of neurofibromin in adrenal gland tumors from patients with neurofibromatosis 1. Genes Chromosomes Cancer 10:55–58PubMedCrossRefGoogle Scholar
  170. Gutmann DH, Geist RT, Rose K, Wright DE (1995 a) Expression of two new protein isoforms of the neurofibromatosis type 1 gene product, neurofibromin, in muscle tissues. Dev Dyn 202:302–311PubMedCrossRefGoogle Scholar
  171. Gutmann DH, Geist RT, Wright DE, Snider WD (1995 b) Expression of the neurofibromatosis 1 (NF1) isoforms in developing and adult rat tissues. Cell Growth Diff 6:315–323PubMedGoogle Scholar
  172. Gutmann DH, Wright DE, Geist RT, Snider WD (1995 c) Expression of the neurofibromatosis 2 (NF2) gene isoforms during rat embryonic development. Hum Mol Genet 4:471–478PubMedCrossRefGoogle Scholar
  173. Gutmann DH, Giordano MJ, Mahadeo DK, Lau N, Silbergeld D, Guha A (1996) Increased neurofibromatosis 1 gene expression in astrocytic tumors: positive regulation by p21-ras. Oncogene 16:2121–2127Google Scholar
  174. Gutmann DH, Aylsworth A, Carey JC et al. (1997 a) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57PubMedCrossRefGoogle Scholar
  175. Gutmann DH, Giordano MJ, Fishback AS, Guha A (1997 b) Loss of merlin expression in sporadic meningiomas, ependymomas and schwannomas. Neurology 49:267–270PubMedCrossRefGoogle Scholar
  176. Gutmann DH, Geist RT, Xu Hm, Kim JS, Saporito-Irwin S (1998) Defects in neurofibromatosis 2 protein function can arise at multiple levels. Hum Mol Genet 7:335–345PubMedCrossRefGoogle Scholar
  177. Gutmann DH, Zhang Y, Hirbe A (1999 a) Developmental regulation of a neuron-specific neurofibromatosis 1 isoform. Ann Neurol 46:777–782PubMedCrossRefGoogle Scholar
  178. Gutmann DH, Loehr A, Zhang Y, Kim J, Henkemeyer M, Cashen A (1999 b) Haploinsufficiency for the neurofibromatosis 1 (NF1) tumor suppressor results in increased astrocyte proliferation. Oncogene 18:4450–4459PubMedCrossRefGoogle Scholar
  179. Gutmann DH, Haipek CA, Hoang Lu K (1999 c) Neurofibromatosis 2 tumor suppressor protein, merlin, forms two functionally important intramolecular associations. J Neurosci Res 58:706–716PubMedCrossRefGoogle Scholar
  180. Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M (1999d) Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesion and spreading. Hum Mol Genet 8:267–275PubMedCrossRefGoogle Scholar
  181. Gutmann DH, Donahoe J, Brown T, James CD, Perry A (2000) Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appi Neurobiol 26:361–367CrossRefGoogle Scholar
  182. Habib AA, Morton LS, Allwardt B et al. (1998 a) Expression of the oligodendrocyte-myelin glycoprotein by neurons in the mouse central nervous system. J Neurochem 70:1704–1711PubMedCrossRefGoogle Scholar
  183. Habib AA, Gulcher JR, Högnason T, Zheng L, Stefânsson K (1998 b) The OMgp gene, a second growth suppressor within the NF1 gene. Oncogene 16:1525–1531PubMedCrossRefGoogle Scholar
  184. Habiby R, Silverman B, Listernick R, Charrow J (1995) Precocious puberty in children with neurofibromatosis type 1. J Pediatr 126:364–367PubMedCrossRefGoogle Scholar
  185. Haeussler J, Haeusler J, Striebel AM et al. (2000) Tumor antigen HuR binds specifically to one of five proteinbinding segments in the 3′-untranslated region of the neurofibromin messenger RNA. Biochem Biophys Res Commun 267:726–732PubMedCrossRefGoogle Scholar
  186. Hajra A, Martin-Gallardo A, Tarlé SA et al. (1994) DNA sequences in the promoter region of the NF1 gene are highly conserved between human and mouse. Genomics 21:649–652PubMedCrossRefGoogle Scholar
  187. Hall A (1993) s-related proteins. Curr Opin Cell Biol 5:265–268PubMedCrossRefGoogle Scholar
  188. Hamilton SR, Liu B, Parsons RE et al. (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332:839–847PubMedCrossRefGoogle Scholar
  189. Han JW, McCormick F, Macara IG (1991) Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids. Science 252:576–579PubMedCrossRefGoogle Scholar
  190. Hansson HA, Lauritzen C, Lossing C, Petruson K (1988) Somatomedin C as tentative pathogenic factor in neurofibromatosis. Scand J Plast Reconstr Surg 22:7–13CrossRefGoogle Scholar
  191. Hara T, Bianchi AB, Seizinger BR, Kley N (1994) Molecular cloning and characterization of alternatively spliced transcripts of the mouse neurofibromatosis 2 gene. Cancer Res 54:330–335PubMedGoogle Scholar
  192. Harada T, Irving RM, Xuereb JH et al. (1996) Molecular genetic investigation of the neurofibromatosis type 2 tumor suppressor gene in sporadic meningioma. J Neurosurg 84:847–851PubMedCrossRefGoogle Scholar
  193. Harwalkar JA, Lee JH, Hughes G, Kinney SE, Golubic M (1998) Immunoblotting analysis of schwannomin/merlin in human schwannomas. Am J Otol 19:654–659PubMedGoogle Scholar
  194. Hattori S, Maekawa M, Nakamura S (1992) Identification of neurofibromatosis type 1 gene product as an insoluble GTPase-activating protein towards ras p21. Oncogene 7:481–485PubMedGoogle Scholar
  195. Hayashi S, Kubota Y, Shimada S, Hori Y (1990) Characterization of cultured neurofibroma cells derived from von Recklinghausen’s disease. Clin Exp Dermatol 15:217–221PubMedCrossRefGoogle Scholar
  196. Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O (1998) Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273:1.893–21.900CrossRefGoogle Scholar
  197. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE (1998) MAP kinase links the transcription factor microphthalmia to c-Kit signalling in melanocytes. Nature 391:298–301PubMedCrossRefGoogle Scholar
  198. Henkemeyer M, Rossi DJ, Holmyard DP et al. (1995) Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377:695–701PubMedCrossRefGoogle Scholar
  199. Hermonen J, Hirvonen O, Ylä-Outinen H et al. (1995) Neurofibromin: expression by normal human keratinocytes in vivo and in vitro and in epidermal malignancies. Lab Invest 73:221–228PubMedGoogle Scholar
  200. Hewett SJ, Choi DW, Gutmann DH (1995) Expression of the neurofibromatosis 1 (NF1) gene in reactive astrocytes in vitro. Neuroreport 31:1565–1568CrossRefGoogle Scholar
  201. Hinrichs SH, Nerenberg M, Reynolds RK, Khoury G, Jay G (1987) A transgenic mouse model for human neurofibromatosis. Science 237:1340–1343PubMedCrossRefGoogle Scholar
  202. Hirao M, Sato N, Kondo T et al. S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51PubMedCrossRefGoogle Scholar
  203. Hitotsumatsu T, Kitamoto T, Iwaki T, Fukui M, Tateishi J (1994) An exon 8-spliced out transcript of neurofibromatosis 2 gene is constitutively expressed in various human tissues. J Biochem 116:1205–1207PubMedGoogle Scholar
  204. Hitotsumatsu T, Iwaki T, Kitamoto T et al. (1997) Expression of neurofibromatosis 2 protein in human brain tumors: an immunohistochemical study. Acta Neuropathol (Beri) 93:225–232CrossRefGoogle Scholar
  205. Hoang-Xuan K, Merel P, Vega F et al. (1995) Analysis of the NF2 tumor-suppressor gene and of chromosome 22 deletions in gliomas. Int J Cancer 60:478–481PubMedCrossRefGoogle Scholar
  206. Hoffmeyer S, Assum G, Griesser J, Kaufmann D, Nürnberg P, Krone W (1995) On unequal allelic expression of the neurofibromin gene in neurofibromatosis type 1. Hum Mol Genet 4:1267–1272PubMedCrossRefGoogle Scholar
  207. Hoffmeyer S, Nürnberg P, Ritter H et al. (1998) Nearby stop codons in exons of the neurofibromatosis type 1 gene are disparate splice effectors. Am J Hum Genet 62:269–277PubMedCrossRefGoogle Scholar
  208. Hollstein M, Rice K, Greenblatt MS et al. (1994) Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22:3551–3555PubMedGoogle Scholar
  209. Honda M, Arai E, Sawada S, Ohta A, Niimura M (1995) Neurofibromatosis 2 and neurilemmomatosis gene are identical. J Invest Dermatol 104:74–77PubMedCrossRefGoogle Scholar
  210. Huang L, Ichimaru E, Pestonjamasp K et al. (1998) Merlin differs from moesin in binding to F-actin and in its intra-and intermolecular interactions. Biochem Biophys Res Commun 248:548–553PubMedCrossRefGoogle Scholar
  211. Huebner K, Isobe M, Chao M et al. (1986) The nerve growth factor receptor gene is at human chromosome region 17ql2–17q22 distal to the chromosome 17 breakpoint in acute leukemias. Proc Natl Acad Sci USA 83:1403–1407PubMedCrossRefGoogle Scholar
  212. Hulsebos TJ, Bijleveld EH, Riegman PH, Smink LJ, Dunham I (1996) Identification and characterization of NF1-related loci on human chromosomes 22, 14, and 2. Hum Genet 98:7–11PubMedCrossRefGoogle Scholar
  213. Huson SM (1994 a) Neurofibromatosis: historical perspective, classification and diagnostic criteria. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman & Hall, London New York, pp 1–22Google Scholar
  214. Huson SM (1994 b) Neurofibromatosis 1: a clinical and genetic overview. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman & Hall, London New York, pp 160–203Google Scholar
  215. Huson SM, Upadhyaya M (1994) Neurofibromatosis 1: clinical management and genetic counselling. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman & Hall, London New York, pp 355–381Google Scholar
  216. Huson SM, Jones DD, Beck L (1987) Ophthalmic manifestations of neurofibromatosis. Br J Ophthalmol 71:235–238PubMedCrossRefGoogle Scholar
  217. Huson SM, Harper PS, Compston DAS (1988) Von Recklinghausen neurofibromatosis: a clinical and population study in South East Wales. Brain 111:1355–1381PubMedCrossRefGoogle Scholar
  218. Huson SM, Compston DAS, Clark P, Harper PS (1989) A genetic study of von Recklinghausen neurofibromatosis in south east Wales. I Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet 26:704–711PubMedCrossRefGoogle Scholar
  219. Huynh DP, Pulst SM (1996) Neurofibromatosis 2 antisense oligodeoxynucleotides induce reversible inhibition of schwannomin synthesis and cell adhesion in STS26T and T98G cells. Oncogene 13:73–84PubMedGoogle Scholar
  220. Huynh DP, Lin CT, Pulst SM (1992) Expression of neurofibromin, the neurofibromatosis 1 gene product: studies in human neuroblastoma cells and rat brain. Neurosci Lett 143:233–236PubMedCrossRefGoogle Scholar
  221. Huynh DP, Nechiporuk T, Pulst SM (1994) Differential expression and tissue distribution of type I and type II neurofibromins during mouse fetal development. Dev Biol 161:538–551PubMedCrossRefGoogle Scholar
  222. Huynh DP, Tran TMD, Nechiporuk T, Pulst SM (1996) Expression of neurofibromatosis 2 transcript and gene product during mouse fetal development. Cell Growth Differ 7:1551–1561PubMedGoogle Scholar
  223. Huynh DP, Mautner V, Baser ME, Stavrou D, Pulst SM (1997) Immunohistochemical detection of schwannomin and neurofibromin in vestibular schwannomas, ependymomas and meningiomas. J Neuropathol Exp Neurol 56:382–390PubMedCrossRefGoogle Scholar
  224. Ikeda K, Saeki Y, Gonzalez-Agosti C, Ramesh V, Chiocca EA (1999) Inhibition of NF2-negative and NF2-positive primary human meningioma cell proliferation by overexpression of merlin due to vector-mediated gene transfer. J Neurosurg 91:85–92PubMedCrossRefGoogle Scholar
  225. Ingram DA, Yang FC, Travers JB et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nfl tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191:181–188PubMedCrossRefGoogle Scholar
  226. Irving RM, Moffat DA, Hardy DG, Barton DE, Xuereb JH, Maher ER (1994) Somatic NF2 gene mutations in familial and non-familial vestibular schwannoma. Hum Mol Genet 3:347–350PubMedCrossRefGoogle Scholar
  227. Ishioka C, Ballester R, Engelstein M et al. (1995) A functional assay for heterozygous mutations in the GTPase activating protein related domain of the neurofibromatosis type 1 gene. Oncogene 10:841–847PubMedGoogle Scholar
  228. Izawa I, Tamaki N, Saya H (1996) Phosphorylation of neurofibromatosis type 1 gene product (neurofibromin) by cAMP-dependent protein kinase. FEBS Lett 382:53–59PubMedCrossRefGoogle Scholar
  229. Jaakkola S, Peltonen J, Uitto J (1989) Perineurial cells coexpress genes encoding interstitial collagens and basement membrane zone components. J Cell Biol 108:1157–1163PubMedCrossRefGoogle Scholar
  230. Jaaskelainen J, Paetau A, Pyykko I, Blomstedt G, Palva T, Troupp H (1994) Interface between the facial nerve and large acoustic neurinomas. Immunohistochemical study of the cleavage plane in NF2 and non-NF2 cases. J Neurosurg 80:541–547PubMedCrossRefGoogle Scholar
  231. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994 a) Tumour predisposition in mice heterozygous for a targeted mutation in NFL Nat Genet 7:353–361PubMedCrossRefGoogle Scholar
  232. Jacks T, Remington L, Williams BO et al. (1994b) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7PubMedCrossRefGoogle Scholar
  233. Jackson RJ (1993) Cytoplasmic regulation of mRNA function: the importance of the 3′untranslated region. Cell 74:9–14PubMedCrossRefGoogle Scholar
  234. Jacoby LB, Pulaski K, Rouleau GA, Martuza RL (1990) Clonal analysis of human meningiomas and schwannomas. Cancer Res 50:6783–6786PubMedGoogle Scholar
  235. Jacoby LB, MacCollin M, Louis DN et al. (1994) Exon scanning for mutation of the NF2 gene in schwannomas. Hum Mol Genet 3:413–419PubMedCrossRefGoogle Scholar
  236. Jacoby LB, MacCollin M, Barone R, Ramesh V, Gusella JF (1996) Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 17:45–55PubMedCrossRefGoogle Scholar
  237. Jacoby LB, Jones D, Davis K et al. (1997) Molecular analysis of the NF2 tumor-suppressor gene in schwannomatosis. Am J Hum Genet 61:1293–1302PubMedCrossRefGoogle Scholar
  238. Jacoby LB, MacCollin M, Parry DM et al. (1999) Allelic expression of the NF2 gene in neurofibromatosis 2 and schwannomatosis. Neurogenetics 2:101–108PubMedCrossRefGoogle Scholar
  239. Jadayel D, Fain P, Upadhyaya M et al. (1990) Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature 343:558–559PubMedCrossRefGoogle Scholar
  240. Jamieson CR, Bürgt I van der, Brady AF et al. (1994) Mapping a gene for Noonan syndrome to the long arm of chromosome 12. Nat Genet 8:357–360PubMedCrossRefGoogle Scholar
  241. Jarpe MB, Widmann C, Knall C et al. (1998) Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the road to death. Oncogene 17:1475–1482PubMedCrossRefGoogle Scholar
  242. Javahery R, Khachi A, Lo K, Zenzie-Gregory B, Smale ST (1994) DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol 14:116–127PubMedGoogle Scholar
  243. Jenne DE, Tinschert S, Stegmann E et al. (2000) A common set of at least 11 functional genes are lost in the majority of NF1 patients with gross deletions. Genomics 15:93–97CrossRefGoogle Scholar
  244. Jensen S, Paderanga D, Chen P et al. (1995) Molecular analysis of the NF1 locus in astrocytic brain tumors. Cancer 76:674–677PubMedCrossRefGoogle Scholar
  245. Jhanwar SC, Chen Q, Li FP, Brennan MF, Woodruff JM (1994) Cytogenetic analysis of soft tissue sarcomas. Recurrent chromosome abnormalities in malignant peripheral nerve sheath tumors (MPNST). Cancer Genet Cytogenet 78:138–144PubMedCrossRefGoogle Scholar
  246. John AM, Ruggieri M, Ferner R, Upadhyaya M (2000) A search for evidence of somatic mutations in the NF1 gene. J Med Genet 37:44–49PubMedCrossRefGoogle Scholar
  247. Johnson MR, Look AT, De Clue JE, Valentine MB, Lowy DR (1993) Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP-Ras. Proc Natl Acad Sci USA 90:5539–5543PubMedCrossRefGoogle Scholar
  248. Johnson MR, DeClue JE, Felzmann S et al. (1994) Neurofibromin can inhibit ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol Cell Biol 14:641–645PubMedGoogle Scholar
  249. Johnson LL, Dyer R, Hupe DJ (1996) Matrix metalloproteinases. Curr Opin Chem Biol 2:466–471CrossRefGoogle Scholar
  250. Jones PA (1996) DNA methylation errors and cancer. Cancer Res 56:2463–2467PubMedGoogle Scholar
  251. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:1163–167CrossRefGoogle Scholar
  252. Joseph JT, Lisle DK, Jacoby LB et al. (1995) NF2 gene analysis distinguishes hemangiopericytoma from meningioma. Am J Pathol 147:1450–1455PubMedGoogle Scholar
  253. Joy P, Roberts C, North K, DeSilva M (1995) Neuropsychological function and MRI abnormalities in neurofibromatosis type 1. Dev Med Child Neurol 37:906–914PubMedCrossRefGoogle Scholar
  254. Kalra R, Paderanga DC, Olson K, Shannon KM (1994) Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 84:3435–3439PubMedGoogle Scholar
  255. Kamleiter M, Hanemann CO, Kluwe L et al. (1998) Voltagedependent membrane currents of cultured human neurofibromatosis type 2 Schwann cells. Glia 24:313–322PubMedCrossRefGoogle Scholar
  256. Kanter WR, Eldridge R (1978) Maternal effect in central neurofibromatosis. Lancet 21:903CrossRefGoogle Scholar
  257. Kanter WR, Eldridge R, Fabricant R, Allen JC, Koerber T (1980) Central neurofibromatosis with bilateral acoustic neuroma: genetic, clinical and biochemical distinctions from peripheral neurofibromatosis. Neurology 30:851–859PubMedCrossRefGoogle Scholar
  258. Karsenty G (1999) The genetic transformation of bone biology. Genes Dev 13:3037–3051PubMedCrossRefGoogle Scholar
  259. Kaufmann D, Krone W, Hochsattel R, Martin R (1989) A cell culture study on melanocytes from patients with neurofibromatosis 1. Arch Dermatol Res 281:510–513PubMedCrossRefGoogle Scholar
  260. Kaufmann D, Wiandt S, Veser J, Krone W (1991) Increased melanogenesis in cultured epidermal melanocytes from patients with neurofibromatosis 1 (NF1). Hum Genet 87:144–150PubMedCrossRefGoogle Scholar
  261. Kaufmann D, Bartelt B, Hoffmeyer S, Müller R (1999 a) Posttranslational regulation of neurofibromin content in melanocytes of neurofibromatosis type 1 patients. Arch Dermatol Res 291:312–317PubMedCrossRefGoogle Scholar
  262. Kaufmann D, Junge I, Bartelt B, Lattke H, Müller R (1999 b) On the lysosomal degradation of neurofibromin and its phosphorylation in cultured melanocytes. Biol Chem 380:1071–1078PubMedCrossRefGoogle Scholar
  263. Kaul SC, Mitsui Y, Komatsu Y, Reddel RR, Wadhwa R (1996) A highly expressed 81 kDa protein in immortalized mouse fibroblast: its proliferative function and identity with ezrin. Oncogene 13:1231–1237PubMedGoogle Scholar
  264. Keene JD (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96:5–7PubMedCrossRefGoogle Scholar
  265. Kehrer H, Krone W (1994) Spontaneous chromosomal aberrations in cell cultures from patients with neurofibromatosis 1. Mutat Res 306:61–70PubMedCrossRefGoogle Scholar
  266. Kehrer-Sawatzki H, Schwickardt T, Assum G, Rocchi M, Krone W (1997) A third neurofibromatosis type 1 (NF1) pseudogene at chromosome 15qll.2. Hum Genet 100:595–600PubMedCrossRefGoogle Scholar
  267. Kehrer-Sawatzki H, Maier C, Moschgath E, Elgar G, Krone W (1998) Genomic characterization of the neurofibromatosis type 1 gene of Fugu rubripes. Gene 222:145–153PubMedCrossRefGoogle Scholar
  268. Kerem E, Nissim-Rafinia M, Argaman Z et al. (1997) A missense cystic fibrosis transmembrane conductance regulator mutation with variable phenotype. Pediatrics 100:E5PubMedCrossRefGoogle Scholar
  269. Kerkhoff E, Rapp UR (1998) Cell cycle targets of Ras/Raf signalling. Oncogene 17:1457–1462PubMedCrossRefGoogle Scholar
  270. Kestler HA, Haschka M (1999) A model for the emergence of café-au-lait macules. J Invest Dermatol 113:858–859PubMedCrossRefGoogle Scholar
  271. Kim HA, Ratner N (1997) NF1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol Cell Biol 17:862–872PubMedGoogle Scholar
  272. Kim MR, Tamanoi F (1998) Neurofibromatosis 1 GTPase activating protein-related domain and its functional significance. In: Upadhyaya M, Cooper DN (eds) Neurofibromatosis type 1: from genotype to phenotype. BIOS Scientific Pubi, Oxford, pp 89–112Google Scholar
  273. Kim HA, Rosenbaum T, Marchionni MA, Ratner N, DeClue JF (1995) Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 11:325–335PubMedGoogle Scholar
  274. Kim HA, DeClue JE, Ratner N (1997) cAMP-dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 49:236–247PubMedCrossRefGoogle Scholar
  275. Kimura Y, Koga H, Araki N et al. (1998) The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nat Med 4:915–922PubMedCrossRefGoogle Scholar
  276. Kinzler K, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  277. Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061PubMedCrossRefGoogle Scholar
  278. Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3:255–268PubMedCrossRefGoogle Scholar
  279. Klesse LH, Parada LF (1998) p21 Ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J Neurosci 18:10.420–10.428Google Scholar
  280. Klose A, Ahmadian MR, Schuelke M et al. (1998) Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1 (NF1). Hum Mol Genet 7:1261–1268PubMedCrossRefGoogle Scholar
  281. Kluwe L, Mautner VF (1996) A missense mutation in the NF2 gene results in moderate and mild clinical pheno-5 types of neurofibromatosis type 2. Hum Genet 97:224–227PubMedCrossRefGoogle Scholar
  282. Kluwe L, Mautner VF (1998) Mosaicism in sporadic neurofibromatosis 2 patients. Hum Mol Genet 7:2051–2055PubMedCrossRefGoogle Scholar
  283. Kluwe L, Pulst SM, Koppen J, Mautner VF (1995) A 163-bp deletion in the neurofibromatosis 2 (NF2) gene associated with variant phenotypes. Hum Genet 95:443–446PubMedCrossRefGoogle Scholar
  284. Kluwe L, Bayer S, Baser ME et al. (1996) Identification of NF2 germ-line mutations and comparison with neurofibromatosis 2 phenotypes. Hum Genet 98:534–538PubMedCrossRefGoogle Scholar
  285. Kluwe L, MacCollin M, Tatagiba M et al. (1998) Phenotypic variability associated with 14 splice-site mutations in the NF2 gene. Am J Med Genet 77:228–233PubMedCrossRefGoogle Scholar
  286. Kluwe L, Friedrich RE, Mautner VF (1999 a) Loss of NF1 allele in Schwann cells but not in fibroblasts derived from an NF1-associated neurofibroma. Genes Chromosomes Cancer 24:283–285PubMedCrossRefGoogle Scholar
  287. Kluwe L, Friedrich RE, Mautner V-F (1999b) Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet Cytogenet 113:65–69PubMedCrossRefGoogle Scholar
  288. Kluwe L, Mautner V, Parry D et al. (2000) The partental origin of new mutations in neurofibromatosis 2. Neurogenetics in pressGoogle Scholar
  289. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:829–833Google Scholar
  290. Kobayashi M, Hashimoto N, Hoshino M, Hattori S, Iwashita S (1993) Differential contribution of Mr 120 kDa ras-GTPase-activating protein and neurofibromatosis type 1 gene product during the transition from growth phase to arrested state in human fibroblasts accompanied by a unique rasGTPase-activating activity. FEBS 327:177–182CrossRefGoogle Scholar
  291. Koch G (1966) Phakomatosen. In: Becker PE (Hrsg) Humangenetik. Ein kurzes Handbuch in fünf Bänden, Bd V/1. Thieme, Stuttgart New York, S 34–111Google Scholar
  292. Koga H, Araki N, Takeshima H et al. (1998) Impairment of cell adhesion by expression of the mutant neurofibromatosis type 2 (NF2) genes which lack exons in the ERM-homology domain. Oncogene 17:801–810PubMedCrossRefGoogle Scholar
  293. Koh T, Yokota J, Ookawa K et al. (1995) Alternative splicing of the neurofibromatosis 1 gene correlates with growth patterns and neuroendocrine properties of human smallcell lung-carcinoma cell. Int J Cancer 60:843–847PubMedCrossRefGoogle Scholar
  294. Köhler B (1990) Neurofibromatose im Kindesalter. Klinik und Diagnostik von Kindern mit Morbus Recklinghausen. Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 1–150Google Scholar
  295. Koivunen J, Yla-Outinen H, Korkiamaki T et al. (2000) New function for NF1 tumor suppressor. J Invest Dermatol 114:473–479PubMedCrossRefGoogle Scholar
  296. Korf BR (1999) NNFF (National Neurofibromatosis Foundation) International NF1 Genetic Analysis Consortium. Februar 1999. http://www.clam.com/nf/nflgene/secure_ data/nf lgene.mutdata.index.htmlGoogle Scholar
  297. Krämer A (1996) The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 65:367–409PubMedCrossRefGoogle Scholar
  298. Krasnoselsky A, Massay MJ, DeFrances MC, Michalopoulos G, Zarnegar R, Ratner N (1994) Hepatocyte growth factor is a mitogen for Schwann cells and is present in neurofibromas. J Neurosci 14:7284–7290PubMedGoogle Scholar
  299. Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90:41–54PubMedCrossRefGoogle Scholar
  300. Kroll J, Waltenberger J (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 272:32.521–32.527CrossRefGoogle Scholar
  301. Krone W, Mao R, Mühleck O, Kling H, Fink T (1986) Cell culture studies on neurofibromatosis (von Recklinghausen). Characterization of cells growing from neurofibromas. Ann N Y Acad Sci 486:354–370PubMedCrossRefGoogle Scholar
  302. Krone W, Hoffmeyer S, Grießer J et al. (1998) Studies on neurofibromatosis typ 1. In: In: Singh JR, Sperling K, Neitzel H (eds) Progress in human genetics. Printwell, AmritsarGoogle Scholar
  303. Lajeunesse DR, McCartney BM, Fehon RG (1998) Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J Cell Biol 141:1589–1599PubMedCrossRefGoogle Scholar
  304. Lakkis MM, Epstein JA (1998) Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125:4359–4367PubMedGoogle Scholar
  305. Lakkis MM, Golden JA, O’shea KS, Epstein JA (1999) Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev Biol 212:80–92PubMedCrossRefGoogle Scholar
  306. Lamszus K, Vahldiek F, Mautner VF et al. (2000) Allelic losses in neurofibromatosis 2-associated meningiomas. J Neuropathol Exp Neurol 59:504–12PubMedGoogle Scholar
  307. Largaespada DA, Shoughnessy JD, Jenkins NA, Copeland NG (1995) Retroviral integration at the Evi-2 locus in BXH-2 myeloid leukemia cell lines disrupts NF1 expression without changes in steady-state Ras-GTP levels. J Virol 69:5095–5102PubMedGoogle Scholar
  308. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG (1996) NF1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 12:137–143PubMedCrossRefGoogle Scholar
  309. Larson JJ, Tew JM Jr, Simon M, Menon AG (1995) Evidence for clonal spread in the development of multiple meningiomas. J Neurosurg 83:705–709PubMedCrossRefGoogle Scholar
  310. Lassmann H, Jurecka W, Gebhart W (1976) Some electron microscopic and autoradiographic results concerning cutaneous neurofibromas in von Recklinghausen’s disease. Arch Dermatol Res 255:69–81PubMedCrossRefGoogle Scholar
  311. Lassmann H, Jurecka W, Lassmann G, Gebhart W, Matras H, Watzek G (1977) Different types of benign nerve sheath tumors. Virchows Arch 375:197–210Google Scholar
  312. Läzaro C, Gaona A, Lynch M, Kruyer H, Ravella A, Estivili X (1995) Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism. Am J Hum Genet 57:1044–1049PubMedGoogle Scholar
  313. Lâzaro C, Gaona A, Ainsworth P et al. (1996) Sex differences in mutational rate and mutational mechanism in the NF1 gene in neurofibromatosis type 1 patients. Hum Genet 98:696–699PubMedCrossRefGoogle Scholar
  314. Leblanc V, Tocque B, Delumeau I (1998) Ras-GAP controls Rho-mediated cytoskeletal reorganization through its SH3 domain. Mol Cell Biol 18:5567–5578PubMedGoogle Scholar
  315. Ledbetter DH, Rich DC, O'Connell P, Leppert M, Carey JC (1989) Precise localization of NF1 to 17qll.2 by balanced translocation. Am J Hum Genet 44:20–24PubMedGoogle Scholar
  316. Lee MH, Williams BO, Mulligan G et al. (1996) Targeted disruption of pi07: functional overlap between pi07 and Rb. Genes Dev 10:1621–1632PubMedCrossRefGoogle Scholar
  317. Lee JH, Sundaram V, Stein DJ, Kinney SE, Stacey DW, Golubic M (1997) Reduced expression of schwannomin/merlin in human sporadic meningiomas. Neurosurgery 40:578–587PubMedGoogle Scholar
  318. Legius E, Marchuk DA, Hall BK et al. (1992) NF1-related locus on chromosome 15. Genomics 13:1316–1318PubMedCrossRefGoogle Scholar
  319. Legius E, Marchuk DA, Collins FS (1993) Somatic deletion of the neurofibromatosis type 1 gene in a neurofibromasarcoma supports a tumour suppressor gene hypothesis. Nat Genet 3:122–126PubMedCrossRefGoogle Scholar
  320. Legius E, Dierick H, Wu R et al. (1994) TP53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer 10:250–255PubMedCrossRefGoogle Scholar
  321. Legoix P, Legrand MF, Ollagnon E, Lenoir G, Thomas G, Zucman-Rossi J (1999) Characterisation of 16 polymorphic markers in the NF2 gene: application to hemizygosity detection. Hum Mutat 13:290–293PubMedCrossRefGoogle Scholar
  322. Lekanne Deprez RH, Bianchi AB et al. (1994) Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas. Am J Hum Genet 54:1022–1029PubMedGoogle Scholar
  323. Lewis RA, Riccardi VM (1981) Von Recklinghausen neurofibromatosis. Incidence of iris hamartomata. Ophthalmology 88:348–354PubMedGoogle Scholar
  324. Li Y, White R (1996) Suppression of a human colon cancer cell line by introduction of an exogenous NF1 gene. Cancer Res 56:2872–2876PubMedGoogle Scholar
  325. Li Y, Bollag G, Clark R et al. (1992) Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69:275–281PubMedCrossRefGoogle Scholar
  326. Li Y, O'Connell P, Breidenach HH et al. (1995) Genomic organization of the neurofibromatosis 1 gene (NF1). Genomics 25:9–18PubMedCrossRefGoogle Scholar
  327. Lindblom A, Ruttledge M, Collins VP, Nordenskjold M, Dumanski JP (1994) Chromosomal deletions in anaplastic meningiomas suggest multiple regions outside chromosome 22 as important in tumor progression. Int J Cancer 56:354–357PubMedCrossRefGoogle Scholar
  328. Lipton S, Zuckerbrod M (1966) Familial enteric neurofibromatosis. Med Times 94:544–548PubMedGoogle Scholar
  329. Lisch K (1937) Über Beteiligung der Augen, insbesondere das Vorkommen von Irisknötchen bei der Neurofibromatose (Recklinghausen). Z Augenheilkd 93:137–143Google Scholar
  330. Listernick R, Louis DN, Packer RJ, Gutmann DH (1997) Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 optic pathway glioma task force. Am Neurol 41:143–149CrossRefGoogle Scholar
  331. Lopez-Correa C, Brems H, Lazaro C et al. (1999) Molecular studies in 20 submicroscopic neurofibromatosis type 1 gene deletions. Hum Mutat 14:387–93PubMedCrossRefGoogle Scholar
  332. Lopez-Correa C, Zucman-Rossi J, Brems H, Thomas G, Legius E (2000) NF2 gene deletion in a family with a mild phenotype. J Med Genet 37:75–77PubMedCrossRefGoogle Scholar
  333. Lothe RA, Saeter G, Danielsen HE et al. (1993) Genetic alterations in a malignant schwannoma from a patient with neurofibromatosis (NF1). Pathol Res Pract 189:465–471PubMedCrossRefGoogle Scholar
  334. Lothe RA, Slettan A, Saeter G, Brogger A, Borresen AL, Nesland JM (1995) Alterations at chromosome 17 loci in peripheral nerve sheath tumors. J Neuropathol Exp Neurol 54:65–73PubMedCrossRefGoogle Scholar
  335. Lothe RA, Karhu R, Mandahl N et al. (1996) Gain of 17q24-qter detected by comparative genomic hybridization in malignant tumors from patiens with von Recklinghausen’s neurofibromatosis. Cancer Res 56:4778–4781PubMedGoogle Scholar
  336. Louis DN, Ramesh V, Gusella JF (1995) Neuropathology and molecular genetics of neurofibromatosis 2 and related tumors. Brain Pathol 5:163–172PubMedCrossRefGoogle Scholar
  337. Ludwig L, Janssen JWG, Schulz AS, Bartram CR (1993) Mutations within the FLR exon of NF1 are rare in myelodysplastic syndromes and acute myelocytic leukemias. Leukemia 7:1058–1060PubMedGoogle Scholar
  338. Ludwig L, Janssen JW, Bartram CR (1995) Exon trap analysis of a NF1 splice-site mutation in a chronic myelomonocytic leukemia patient. Leukemia 9:922–924PubMedGoogle Scholar
  339. Luijten M, Wang Y, Smith BT et al. (2000) Mechanism of spreading of the highly related neurofibromatosis type 1 (NF1) pseudogenes on chromosomes 2, 14 and 22. Eur J Hum Genet 8:209–214PubMedCrossRefGoogle Scholar
  340. Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Cell Biol 8:437–441Google Scholar
  341. Lukes A, Mun-Bryce S, Lukes M, Rosenberg GA (1999) Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol 19:267–284PubMedCrossRefGoogle Scholar
  342. Luongo C, Moser AR, Gledhill S, Dove WF (1994) Loss of Apc-i-in intestinal adenomas from Min mice. Cancer Res 54:5947–5952PubMedGoogle Scholar
  343. Luria D, Avigad S, Cohen IJ, Stark B, Weitz R, Zaizov R (1997) p53 mutation as the second event in juvenile chronic myelogenous leukemia in a patient with neurofibromatosis type 1. Cancer 80:2013–2018PubMedCrossRefGoogle Scholar
  344. Lusins JO, Nakagawa H (1981) Multiple meningiomas evaluated by computed tomography. Neurosurgery 9:137–141PubMedCrossRefGoogle Scholar
  345. Lutchman M, Rouleau G A (1995) The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 55:2270–2274PubMedGoogle Scholar
  346. Lynch HT, Chapelle A de la (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36:801–818PubMedGoogle Scholar
  347. MacCollin M (1996) NF2 germline mutation map. Version 26.8.1999 http://neuro-trials 1.mgh.harvard.edu/nf2/MacCollin MGoogle Scholar
  348. Woodfin W, Kronn D, Short MP (1996) Schwannomatosis: a clinical and pathologic study. Neurology 46:1072–1079PubMedCrossRefGoogle Scholar
  349. MacEwen (1990) Orthopedic aspects of neurofibromatosis. In: Rubenstein AE, Korf BR (1990) Neurofibromatosis. A handbook for patients, families and health-care professionals. Thieme, Stuttgart New York, pp 125–141Google Scholar
  350. Maeda M, Matsui T, Imamura M, Tsukita S, Tsukita S (1999) Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with ezrin/radixin/moesin proteins. Oncogene 18:4788–4797PubMedCrossRefGoogle Scholar
  351. Magendantz M, Henry MD, Lander A, Solomon F (1995) Interdomain interactions of radixin in vitro. J Biol Chem 270:25.324–25.327Google Scholar
  352. Malhotra R, Ratner N (1994) Localization of neurofibromin to keratinocytes and melanocytes developing rat and human skin. J Invest Dermatol 102:812–818PubMedCrossRefGoogle Scholar
  353. Mancini DN, Singh SM, Archer TK, Rodenhiser DI (1999) Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SPI transcription factors. Oncogene 18:4108–4119PubMedCrossRefGoogle Scholar
  354. Mangeât P, Roy C, Martin M (1999) ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol 9:187–192PubMedCrossRefGoogle Scholar
  355. Mangues R, Corral T, Lu S, Symmans WF, Liu L, Pellicer A (1998) NF1 inactivation cooperates with N-ras in in vivo lymphogenesis activating Erk by a mechanism independent of its Ras-GTPase accelerating activity. Oncogene 17:1705–1716PubMedCrossRefGoogle Scholar
  356. Maquat LE (1996) Defects in RNA splicing and the consequence of shortened translational reading frames. Am J Hum Genet 59:279–286PubMedGoogle Scholar
  357. Marchuk DA, Saulino AM, Tavakkol R et al. (1991) cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11:931–940PubMedCrossRefGoogle Scholar
  358. Martin GA, Viskochil D, Bollag G et al. (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849PubMedCrossRefGoogle Scholar
  359. Martinsson T, Sjöberg RM, Hedborg F, Kogner P (1997) Homozygous deletion of the neurofibromatosis-1 gene in the tumor of a patient with neuroblastoma. Cancer Genet Cytogenet 95:183–189PubMedCrossRefGoogle Scholar
  360. Martuza RL, Philippe I, Fitzpatrick TB, Zwaan J, Seki Y, Lederman J (1985) Melanin macroglobules as a cellular marker of neurofibromatosis: a quantitative study. J Invest Dermatol 85:347–350PubMedCrossRefGoogle Scholar
  361. Mastrangelo M, Goepp CE, Patel YA, Clark WH (1979) Cutaneous melanoma in a patient with neurofibromatosis. Arch Dermatol 115:864–865PubMedCrossRefGoogle Scholar
  362. Matsui I, Tanimuro M, Kobayashi N, Sawada T, Nagahara N, Akatsuka J (1993) Neurofibromatosis type 1 and childhood cancer. Cancer 72:2746–2754PubMedCrossRefGoogle Scholar
  363. Matsui T, Maeda M, Doi Y et al. (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/ moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140:647–657PubMedCrossRefGoogle Scholar
  364. Matsui T, Yonemura S, Tsukita S, Tsukita S (1999) Activation of ERM proteins in vivo by Rho involves phosphatidylinositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9:1259–1262PubMedCrossRefGoogle Scholar
  365. Mautner VF, Tatagiba M, Lindenau M et al. (1995) Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol 165:951–955PubMedGoogle Scholar
  366. Mautner VF, Lindenau M, Baser ME et al. (1996 a) The neuroimaging and clinical spectrum of neurofibromatosis 2. Neurosurgery 38:880–885PubMedCrossRefGoogle Scholar
  367. Mautner VF, Baser ME, Kluwe L (1996 b) Phenotypic variability in two families with novel splice-site and frameshift NF2 mutations. Hum Genet 98:203–206PubMedCrossRefGoogle Scholar
  368. Mautner VF, Lindenau M, Baser ME, Kluwe L, Gottschalk J (1997) Skin abnormalities in neurofibromatosis 2. Arch Dermatol 133:1539–1543PubMedCrossRefGoogle Scholar
  369. Maxwell M, Shih SD, Galanopoulos T, Hedley-Whyte ET, Cosgrove GR (1998) Familial meningioma: analysis of expression of neurofibromatosis 2 protein merlin. Report of two cases. J Neurosurg 88:562–569PubMedCrossRefGoogle Scholar
  370. Mazarakis ND, Yannoutsos N, el-Jabbour JN, Hatton W, Fletcher R, Grosveld F (1996) Neurocristopathy resembling neurofibromatosis type 1 in an NGF-SV40 transgenic line. Genes Cells 1:125–137PubMedGoogle Scholar
  371. McCartney BM, Fehon RG (1996) Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the neurofibromatosis 2 tumor suppressor, merlin. J Cell Biol 133:843–852.PubMedCrossRefGoogle Scholar
  372. McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T (1997) The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev 11:1253–1265PubMedCrossRefGoogle Scholar
  373. McClatchey AI, Saotome I, Mercer K et al. (1998) Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12:1121–1133PubMedCrossRefGoogle Scholar
  374. McGaughran JM, Harris DI, Donnai D et al. (1999) A clinical study of type 1 neurofibromatosis in North West England. J Med Genet 36:197–203PubMedGoogle Scholar
  375. McGlade J, Brunkhorst B, Anderson D et al. (1993) The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J 12:3073–3081PubMedGoogle Scholar
  376. McKusick VA (1998) Mendelian interheritance in man, 11th edn. Johns Hopkins University Press, Baltimore LondonGoogle Scholar
  377. Menon AG, Anderson KM, Riccardi VM et al. (1990) Chromosome 17p deletions and p53 gene mutations asso-ciated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci USA 87:5435–5439PubMedCrossRefGoogle Scholar
  378. Metheny LJ, Skuse GR (1996) NF1 mRNA isoform expression in PC 12 cells: modulation by extrinsic factors. Exp Cell Res 228:44–49PubMedCrossRefGoogle Scholar
  379. Mérel P, Hoang-Xuan K, Sanson M et al. (1995) Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chromosomes Cancer 13:211–216PubMedCrossRefGoogle Scholar
  380. Merenmies J, Parada LF, Henkemeyer M (1997) Receptor tyrosine kinase signaling in vascular development. Cell Growth Diff 8:3–10PubMedGoogle Scholar
  381. Messiaen L, Callens T, De Paepe A, Craen M, Mortier G (1997) Characterisation of two different nonsense mutations, C6792A and C6792G, causing skipping of exon 37 in the NF1 gene. Hum Genet 101:75–80PubMedCrossRefGoogle Scholar
  382. Miles DK, Freedman MH, Stephens K et al. (1996) Patterns of hematopoietic lineage involvement in children with neurofibromatosis type 1 and malignant myeloid disorder. Blood 88:4314–4320PubMedGoogle Scholar
  383. Miyauchi J, Asada M, Tsunematsu Y, Kaneko Y, Kojima S, Mizutani S (1999) Abnormalities of the p53 gene in juvenile myelomonocytic leukaemia. Br J Haematol 106:980–986PubMedCrossRefGoogle Scholar
  384. Mohrenweiser HW, Jones IM (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400:15–24PubMedCrossRefGoogle Scholar
  385. Morcos P, Thapar N, Tusneem N, Stacey D, Tamanoi F (1996) Identification of neurofibromin mutants that exhibit allele specificity or increased Ras affinity resulting in suppression of activated ras alleles. Mol Cell Biol 16:2496–2503PubMedGoogle Scholar
  386. Mori S, Satoh T, Koide H, Nakafuku M, Villafranca E, Kaziro Y (1995) Inhibition of Ras/Raf interaction by anti-oncogenic mutants of neurofibromin, the neurofibromatosis type 1 (NF1) gene product, in cell-free systems. J Biol Chem 270:28.834–28.838CrossRefGoogle Scholar
  387. Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9:174–179PubMedCrossRefGoogle Scholar
  388. Muhammad AKM, Yoshimine T, Maruno M et al. (1997) Chromosome 17 allelic loss in astrocytic tumors and its clinico-pathologic implications. Clin Neuropathol 16:220–226PubMedGoogle Scholar
  389. Muir D (1995) Differences in proliferation and invasion by normal, transformed and NF1 Schwann cell cultures are influenced by matrix metalloproteinase expression. Clin Exp Metastasis 13:303–314PubMedCrossRefGoogle Scholar
  390. Muir D, Manthorpe M (1992) Stromelysin generates a fibronectin fragment that inhibits Schwann cell proliferation. J Cell Biol 116:177–185PubMedCrossRefGoogle Scholar
  391. Mulvihill JJ, Parry DM (1987) Symposium on linkage of von Recklinghausen neurofibromatosis (NF1). Genomics 1:337–339CrossRefGoogle Scholar
  392. Murthy A, Gonzalez-Agosti C, Corderò E et al. (1998) NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273:1273–1276PubMedCrossRefGoogle Scholar
  393. Nakafuku M, Nagamine M, Ohtoshi A, Tanaka K, Toh-E A, Kaziro Y (1993) Suppression of oncogenic Ras by mutant neurofibromatosis type 1 genes with single amino acid substitutions. Proc Natl Acad Sci USA 90:6706–6710PubMedCrossRefGoogle Scholar
  394. Nakai H, Misawa S, Horiike S et al. (1994) Analysis of mutations and expression of GAP-related domain of the neurofibromatosis type 1 (NF1) gene in the progression of chronic myelogenous leukemia. Leukemia 8:1027–1033PubMedGoogle Scholar
  395. Nakano A, Tani E, Miyazaki K, Yamamoto Y, Furuyama JI (1995) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg 83:298–307PubMedCrossRefGoogle Scholar
  396. Ng NF, Shooter EM (1993) Activation of p21ras by nerve growth factor in embryonic sensory neurons and PC 12 cells. J Biol Chem 268:25.329–25.333Google Scholar
  397. Ng HK, Lau KM, Tse JYM et al. (1995) Combined molecular genetic studies of chromosome 22q and the neurofibromatosis type 2 gene in central nervous system tumors. Neurosurgery 37:764–773PubMedCrossRefGoogle Scholar
  398. Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Moller MB, Rosenberg AE, Louis DN (1999) Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/pl6 inactivation. Am J Pathol 155:1879–1884PubMedCrossRefGoogle Scholar
  399. Nigro JM, Baker SJ, Preisinger AC et al. (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705–708PubMedCrossRefGoogle Scholar
  400. NIH Consensus Development Conference Neurofibromatosis (1988) Conference statement. Arch Neurol 45:575–578CrossRefGoogle Scholar
  401. Nishi T, Lee P, Oka K et al. (1991) Differential expression of two types of the neurofibromatosis type 1 (NF1) gene transcripts related to neuronal differentiation. Oncogene 6:1155–1559Google Scholar
  402. Noel JP (1997) Turning off the Ras switch with the flick of a finger. Nat Struct Biol 4:677–680PubMedCrossRefGoogle Scholar
  403. Nordlund M, Gu X, Shipley M, Ratner N (1993) Neurofibromin is enriched in the endoplasmic reticulum of CNS neurons. J Neurosci 13:1588–1600PubMedGoogle Scholar
  404. Nordlund ML, Rizvi TA, Brannan CI, Ratner N (1995) Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains. J Neuropathol Exp Neurol 54:588–600PubMedCrossRefGoogle Scholar
  405. North K (1999) Cognitive function and academic performance. In: Friedman JM, Gutmann DH, MacCollin M, Riccardi VM (eds) Neurofibromatosis, phenotype, natural history, and pathogenesis, 3rd edn. John Hopkins University Press, Baltimore, pp 162–189Google Scholar
  406. North K, Joy P, Yuille D et al. (1994) Learning difficulties in neurofibromatosis type 1: the significance of MRI abnormalities. Neurology 44:878–883PubMedCrossRefGoogle Scholar
  407. North K, Joy P, Yuille D, Cocks N, Hutchins P (1995) Cognitive function and academic performance in children with neurofibromatosis type 1. Dev Med Child Neurol 37:427–436PubMedCrossRefGoogle Scholar
  408. Norton KK, Xu J, Gutmann DH (1995) Expression of the neurofibromatosis 1 gene product, neurofibromin, in blood vessel endothelial cells and smooth muscle. Neurobiol Dis 2:13–21PubMedCrossRefGoogle Scholar
  409. Norton KK, Mahadeo DK, Geist RT, Gutmann DH (1996) Expression of the neurofibromatosis 1 (NF1) gene during growth arrest. Neuroreport 7:601–604PubMedCrossRefGoogle Scholar
  410. Obremski VJ, Hall AM, Fernandez-Valle C (1998) Merlin, the neurofibromatosis type 2 gene product, and betal integral associate in isolated and differentiating Schwann cells. J Neurobiol 37:487–501PubMedCrossRefGoogle Scholar
  411. Oshiro N, Fukata Y, Kaibuchi K (1998) Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem 273:34.663–34.666CrossRefGoogle Scholar
  412. Papi L, De Vitis LR, Vitelli F et al. (1995) Somatic mutations in the neurofibromatosis type 2 gene in sporadic meningiomas. Hum Genet 95:347–351PubMedCrossRefGoogle Scholar
  413. Park VM, Pivnick EK (1998) Neurofibromatosis type 1 (NF1): a protein truncation assay yielding identification of mutations in 73% of patients. J Med Genet 35:813–820PubMedCrossRefGoogle Scholar
  414. Park VM, Kenwright KA, Sturtevant DB, Pivnick EK (1998) Alternative splicing of exons 29 and 30 in the neurofibromatosis type 1 gene. Hum Genet 103:382–385PubMedCrossRefGoogle Scholar
  415. Parkes Weber F (1909) Cutaneous pigmentation as an incomplete form of Recklinghausen’s disease, with remarks on the classification of incomplete and anomalous forms of Recklinghausen’s disease. Br J Dermatol 21:49–51Google Scholar
  416. Parry DM, Eldridge R, Kaiser-Kupfer MI, Bouzas EA, Pikus A, Patronas N (1994) Neurofibromatosis 2 (NF2): clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am J Med Genet 52:450–461PubMedCrossRefGoogle Scholar
  417. Parry DM, MacCollin MM, Kaiser-Kupfer MI et al. (1996) Germ-line mutations in the neurofibromatosis 2 gene: correlations with disease severity and retinal abnormalities. Am J Hum Genet 59:529–539PubMedGoogle Scholar
  418. Pelton PD, Sherman LS, Rizvi TA et al. (1998) Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human schwannoma cells. Oncogene 17:2195–2209PubMedCrossRefGoogle Scholar
  419. Peltonen J, Marttala T, Vihersaari T, Renvall S, Penttinen R (1981) Collagen synthesis in cells cultured from von Recklinghausen’s neurofibromatosis. Acta Neuropathol (Beri) 55:183–187CrossRefGoogle Scholar
  420. Peltonen J, Aho H, Halme T et al. (1984) Distribution of different collagen types and fibronectin in neurofibromatosis tumours. Acta Pathol Microbiol Immunol Scand Sect A 92:345–352Google Scholar
  421. Peltonen J, Penttinen R, Larjava H, Aho H (1986) Collagens in neurofibromas and neurofibroma cell cultures. Ann NY Acad Sci 486:260–270PubMedCrossRefGoogle Scholar
  422. Peltonen J, Jaakkola S, Lebwohl M et al. (1988) Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest 59:760–771PubMedGoogle Scholar
  423. Perera FP (1997) Environment and cancer: who are susceptible? Science 278:1068–1073PubMedCrossRefGoogle Scholar
  424. Perry HD, Font RL (1982) Iris nodules in von Recklinghausen’s neurofibromatosis. Arch Ophthalmol 100:1635–1640PubMedCrossRefGoogle Scholar
  425. Petrova TV, Makinen T, Alitalo K (1999) Signaling via vascular endothelial growth factor receptors. Cell Res 2253:117–130CrossRefGoogle Scholar
  426. Plaat BEC, Molenaar WM, Mastik MF, Hoekstra HJ, Meermante GJ, Berg van den E (1999) Computer-assisted cytogenetic analysis of 51 malignant peripheral-nerve-sheath tumors: sporadic vs. neurofibromatosis-type-1-associated malignant schwannomas. Int J Cancer 83:171–178PubMedCrossRefGoogle Scholar
  427. Platten M, Giordano MJ, Dirven CMF, Gutmann DH, Louis DN (1996) Up-regulation of specific NF1 gene transcripts in sporadic pilocytic astrocytomas. Am J Pathol 149:621–637PubMedGoogle Scholar
  428. Pletcher BA, Magee ML, Frohman IP et al. (1996) Confirmation of decreased risk of optic glioma in African Americans with NF type 1. Am J Hum Genet 559:Al01Google Scholar
  429. Poullet P, Lin B, Esson K, Tamanoi F (1994) Functional significance of lysine 1423 of neurofibromin and characterization of a second site suppressor which rescues mutations at this residue and suppresses RAS2Val-19-activated phenotypes. Mol Cell Biol 14:815–821PubMedGoogle Scholar
  430. Poyhonen M, Leisti E-L, Kytölä S, Leisti J (1997) Hereditary spinal neurofibromatosis: a rare form of NF1? J Med Genet 34:184–187PubMedCrossRefGoogle Scholar
  431. Preudhomme C, Vachee A, Quesnel B, Wattel E, Cosson A, Fenaux P (1993) Rare occurrence of mutations of the FLR exon of the neurofibromatosis 1 (NF1) gene in myelodysplastic syndromes (MDS) and acute myeloid leuke-mia (AML). Leukemia 7:10–71Google Scholar
  432. Pronk GJ, Bos JL (1994) The role of p21ras in receptor tyrosine kinase signalling. Biochim Biophys Acta 1198:131–147PubMedGoogle Scholar
  433. Pulst SM, Riccardi VM, Fain P, Korenberg JR (1991) Familial spinal neurofibromatosis: clinical and DNA linkage analysis. Neurology 41:1923–1927PubMedCrossRefGoogle Scholar
  434. Pulst SM, Rouleau GA, Marineau C, Fain P, Sieb JP (1993) Familial meningioma is not allelic to neurofibromatosis 2. Neurology 43:2096–2098PubMedCrossRefGoogle Scholar
  435. Purandare SM, Huntsman Breidenbach H, Li Y et al. (1995) Identification of neurofibromatosis 1 (NF1) homologous loci by direct sequencing, fluorescence in situ hybridization, and PCR amplification of somatic cell hybrids. Genomics 30:476–485PubMedCrossRefGoogle Scholar
  436. Purandare SM, Ota A, Neil S et al. (1996) Identification of eis-regulatory elements in the neurofibromatosis type 1 gene. Am J Hum Genet 59:A157Google Scholar
  437. Pykett MJ, Murphy M, Harnish PR, George DL (1994) The neurofibromatosis 2 (NF2) tumor suppressor gene encodes multiple alternatively spliced transcripts. Hum Mol Genet 3:559–564PubMedCrossRefGoogle Scholar
  438. Ragge NK, Baser ME, Klein J et al. (1995) Ocular abnormalities in neurofibromatosis 2. Am J Ophthalmol 120:634–641PubMedGoogle Scholar
  439. Rao UNM, Surti U, Hoffner L, Yaw K (1996) Cytogenetic and histologic correlation of peripheral nerve sheath tumors of soft tissue. Cancer Genet Cytogenet 88:17–25PubMedCrossRefGoogle Scholar
  440. Rasmussen SA, Coiman SD, Abernathy CR, Muir D, Wallace MR (1997) Somatic loss of the NF1 gene in plexiform neurofibromas in neurofibromatosis type 1. Am J Hum Genet 61:A80CrossRefGoogle Scholar
  441. Rasmussen SA, Coiman SD, Ho VT et al. (1998) Constitutional and mosaic large NF1 gene deletions in neurofibromatosis type 1. J Med Genet 35:468–471PubMedCrossRefGoogle Scholar
  442. Ratner N, Lieberman MA, Riccardi VM, Hong D (1990) Mitogen accumulation in von Recklinghausen neurofibromatosis. Ann Neurol 27:298–303PubMedCrossRefGoogle Scholar
  443. Ratner N, Atit R, Sherman LS, Crowe M, Cox AD, Wenstrup R (1999) Evidence in support of Ras-GTP dependent and independent abnormalities in NF1-mutant cells revealed by a new in situ Ras-activation assay and by skin wounding. Med Genet 11:483Google Scholar
  444. Régnier V, Meddeb M, Lecointre G et al. (1997) Emergence and scattering of multiple neurofibromatosis (NFl)-related sequences during hominoid evolution suggest a process of pericentromeric interchromosomal transposition. Hum Mol Genet 6:9–16PubMedCrossRefGoogle Scholar
  445. Reuther GW, Der CJ (2000) The ras branch of small GTPases: ras family members don't fall far from the tree. Curr Opin Cell Biol 12:157–165PubMedCrossRefGoogle Scholar
  446. Riccardi VM (1980) Pathophysiology of neurofibromatosis. IV. Dermatologie insights into heterogeneity and pathogenesis. J Am Acad Dermatol 3:157–166PubMedCrossRefGoogle Scholar
  447. Riccardi VM (1982) Neurofibromatosis: clinical heterogeneity. Curr Probi Cancer 7:3–33CrossRefGoogle Scholar
  448. Riccardi VM (1986) Growth-promoting factors in neurofibroma crude extracts. In: Rubenstein AE, Bunge RP, Housman DE (eds) Neurofibromatosis. Ann N Y Acad Sci 486:206–226Google Scholar
  449. Riccardi VM (1993) Invited editorial. Genotype, malleotype, phenotype, and randomness: lessons from neurofibromatosis-I (NF-I). Am J Hum Genet 53:301–304PubMedGoogle Scholar
  450. Riccardi VM (1999) Skeletal system. In: Friedman JM, Gutmann DH, MacCollin M, Riccardi VM (eds) Neurofibromatosis. Phenotype, natural history, and pathogenesis, 3rd edn. John Hopkins University Press, Baltimore, pp 250–273Google Scholar
  451. Riccardi VM, Elder DW (1986) Multiple cytogenetic aberrations in neurofibrosarcomas complicating neurofibromatosis. Cancer Genet Cytogenet 23:199–209PubMedCrossRefGoogle Scholar
  452. Riccardi VM, Lewis RA (1988) Penetrance of von Recklinghausen neurofibromatosis: a distinction between predecessors and descendants. Am J Hum Genet 42:284–289PubMedGoogle Scholar
  453. Ricciardone MD, Özcelik T, Cevher B et al. (1999) Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 59:290–293PubMedGoogle Scholar
  454. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577PubMedCrossRefGoogle Scholar
  455. Ridley AJ, Paterson HF, Noble M, Land H (1988) Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J 7:1635–1645PubMedGoogle Scholar
  456. Riopelle RJ, Riccardi VM, Faulkner S, Martin MC (1984) Serum neuronal growth factor levels in von Recklinghausen’s neurofibromatosis. Ann Neurol 16:54–59PubMedCrossRefGoogle Scholar
  457. Ritchie RJ, Mattei M-G, Lalande M (1998) A large polymorphic repeat in the pericentromeric region of human chromosome 15q contains three partial gene duplications. Hum Mol Genet 7:1253–1260PubMedCrossRefGoogle Scholar
  458. Ritter M, Wöll E, Haller T, Dartsch PC, Zwierzina H, Lang F (1997) Activation of Na+/H(+)-exchanger by transforming Ha-ras requires stimulated cellular calcium influx and is associated with rearrangement of the actin cytoskeleton. Eur J Cell Biol 72:222–228PubMedGoogle Scholar
  459. Rizvi TA, Akunuru S, Courten-Myers G de, Switzer RC 3rd, Nordlund ML, Ratner N (1999) Region-specific astrogliosis in brains of mice heterozygous for mutations in the neurofibromatosis type 1 (NF1) tumor suppressor. Brain Res 816:111–123PubMedCrossRefGoogle Scholar
  460. Robinson PN, Boddrich A, Peters H et al. (1995) Two recurrent nonsense mutations and a 4 bp deletion in a quasisymmetric element in exon 37 of the NF1 gene. Hum Genet 96:95–98PubMedCrossRefGoogle Scholar
  461. Rodenhiser DI, Coulter-Mackie MB, Singh SM (1993) Evidence of DNA methylation in the neurofibromatosis type 1 (NF1) gene region of 17qll.2. Hum Mol Genet 2:439–444PubMedCrossRefGoogle Scholar
  462. Rodriguez HA, Berthrong M (1996) Multiple primary intracranial tumors in von Recklinghausen’s neurofibromatosis. Arch Neurol 14:467–475CrossRefGoogle Scholar
  463. Rodriguez-Viciana P, Marte BM, Warne PH, Downward J (1996) Phosphatidylinositol 3′ kinase: one of the effectors of Ras. Philos Trans R Soc Lond B Biol Sci 351:225–231PubMedCrossRefGoogle Scholar
  464. Rosenbaum T, Boissy YL, Kombrinck K et al. (1995) Neurofibromin-deficient fibroblasts fail to form perineurium in vitro. Development 121:3583–3592PubMedGoogle Scholar
  465. Rosenbaum T, Patrie KM, Ratner N (1997) Neurofibromatosis type 1: genetic and cellular mechanisms of peripheral nerve tumor formation. Neuroscientist 3:412–420CrossRefGoogle Scholar
  466. Rosenbaum C, Kluwe L, Mautner VF, Friedrich RE, Muller HW, Hanemann CO (1998) Isolation and characterization of Schwann cells from neurofibromatosis type 2 patients. Neurobiol Dis 5:55–64PubMedCrossRefGoogle Scholar
  467. Rosman NP, Pearce J (1967) The brain in multiple neurofibromatosis (von Recklinghausen’s disease): a suggested neuropathological basis for the associated mental defect. Brain 90:829–838PubMedCrossRefGoogle Scholar
  468. Roudebush M, Slabe T, Sundaram V, Hoppel CL, Golubic M, Stacey DW (1997) Neurofibromin colocalizes with mitochondria in cultured cells. Exp Cell Res 236:161–172PubMedCrossRefGoogle Scholar
  469. Rouleau GA, Wertelecki W, Haines JL et al. (1987) Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature 329:246–248PubMedCrossRefGoogle Scholar
  470. Rouleau GA, Merel P, Lutchman M et al. (1993) Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 363:515–521PubMedCrossRefGoogle Scholar
  471. Roy C, Martin M, Mangeât P (1997) A dual involvement of the amino-terminal domain of ezrin in F-and G-actin binding. J Biol Chem 272:20.088–20.095Google Scholar
  472. Rubinstein LJ (1986) The malformative central nervous system lesions in the central and peripheral form of neurofibromatosis: a neuropathological study of 22 cases. Ann NY Acad Sci 486:14–29PubMedCrossRefGoogle Scholar
  473. Rubio M-P, Correa KM, Ramesh V et al. (1994) Analysis of the neurofibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res 54:45–47PubMedGoogle Scholar
  474. Ruggieri M, Huson SM (1999) The neurofibromatoses. An overview. Ital J Neurol Sci 20:89–108PubMedCrossRefGoogle Scholar
  475. Ruggieri M, Moss C, Upadhyaya M, Huson SM (1999) Segmental/mosaic neurofibromatosis type 1 (NF1): a clinical study. Eur J Paediatr Neurol 3:A66–A67Google Scholar
  476. Rustgi AK, Xu L, Pinney D et al. (1995) Neurofibromatosis 2 gene in human colorectal cancer. Cancer Genet Cytogenet 84:24–26PubMedCrossRefGoogle Scholar
  477. Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI (1995) Purification and expansion of human Schwann cells in vitro. Nat Med 1:80–83PubMedCrossRefGoogle Scholar
  478. Rutkowski JL, Wu K, Gutmann DH, Boyer PJ, Legius E (2000) Genetic and cellular defects contributing to benign tumor formation in neurofibromatosis type 1. Hum Mol Genet 9:1059–1066PubMedCrossRefGoogle Scholar
  479. Ruttledge M, Sarrazin J, Rangaratnam S et al. (1994 a) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184PubMedCrossRefGoogle Scholar
  480. Ruttledge MH, Xie YG, Han FY et al. (1994 b) Deletions on chromosome 22 in sporadic meningioma. Genes Chromosomes Cancer 10:122–130PubMedCrossRefGoogle Scholar
  481. Ruttledge MH, Andermann AA, Phelan CM et al. (1996) Type of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease. Am J Hum Genet 59:331–342PubMedGoogle Scholar
  482. Saal HM, Schorry EK, Lovell AM et al. (1995) Racial differences in the prevalence of optic nerve gliomas in neurofibromatosis type 1. Am J Hum Genet 57:A54Google Scholar
  483. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180PubMedCrossRefGoogle Scholar
  484. Sainio M, Strachan T, Blomstedt G et al. (1995) Presymptomatic DNA and MRI diagnosis of neurofibromatosis 2 with mild clinical course in an extended pedigree. Neurology 45:1314–1322PubMedCrossRefGoogle Scholar
  485. Sainio M, Zhao F, Heiska L et al. (1997) Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J Cell Sci 110:2249–2260PubMedGoogle Scholar
  486. Sainz J, Huynh DDP, Figueroa K, Ragge NK, Baser ME, Pulst St-M (1994) Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 3:885–891PubMedCrossRefGoogle Scholar
  487. Sainz J, Figueroa K, Baser ME, Mautner VF, Pulst SM (1995) High frequency of nonsense mutations in the NF2 gene caused by C to T transitions in five CGA codons. Hum Mol Genet 4:137–139PubMedCrossRefGoogle Scholar
  488. Salyer WR, Salyer DC (1974) The vascular lesions of neurofibromatosis. Angiology 25:510–519PubMedCrossRefGoogle Scholar
  489. Samuelsson B, Akesson HO (1988) Relative fertility and mutation rate in neurofibromatosis. Hereditas 108:169–171PubMedCrossRefGoogle Scholar
  490. Samuelsson B, Akesson HO (1989) Neurofibromatosis in Gothenburg, Sweden. Neurofibromatosis 2:107–115PubMedGoogle Scholar
  491. Sanson M, Marineau C, Desmaze C et al. (1993) Germline deletion in a neurofibromatosis type 2 kindred inactivates the NF2 gene and a candidate meningioma locus. Hum Mol Genet 2:1215–1220PubMedCrossRefGoogle Scholar
  492. Sarfarazi M, Huson SM, Edwards JH (1987) An exclusion map for von Recklinghausen neurofibromatosis. J Med Genet 24:515–520PubMedCrossRefGoogle Scholar
  493. Sasaki T, Arai K, Nagai Y (1992) Growth and collagen synthesis of cultured neurofibroma fibroblasts. J Dermatol 19:598–601PubMedGoogle Scholar
  494. Sawada S, Florell S, Purandare SM, Ota M, Stephens K, Viskochil D (1996) Identification of NF1 mutations in both alleles of a dermal neurofibroma. Nat Genet 14:110–112PubMedCrossRefGoogle Scholar
  495. Scheele JS, Rhee JM, Boss GR (1995) Determination of absolute amounts of GDP and GTP bound to Ras in mammalian cells: comparison of parental and Ras-overproducing NIH 3T3 fibroblasts. Proc Natl Acad Sci USA 92:1097–1100PubMedCrossRefGoogle Scholar
  496. Scheffzek K, Ahmadian MR, Kabsch W et al. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338PubMedCrossRefGoogle Scholar
  497. Scheffzek K, Ahmadian MR, Wiesmüller L et al. (1998) Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J 17:4313–4327PubMedCrossRefGoogle Scholar
  498. Scheurlen WG, Senf L (1995) Analysis of the GAP-related domain of the neurofibromatosis type 1 (NF1) gene in childhood brain tumors. Int J Cancer 64:234–238PubMedCrossRefGoogle Scholar
  499. Schmidt MA, Michels VV, Dewald GW (1987) Cases of neurofibromatosis with rearrangements of chromosome 17 involving band 17qll.2. Am J Med Genet 28:771–777CrossRefGoogle Scholar
  500. Schmitt JM, Hwang K, Winn SR, Hollinger JO (1999) Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res 17:269–278PubMedCrossRefGoogle Scholar
  501. Schmucker B, Ballhausen WG, Kressel M (1997) Subcellular localization and expression pattern of the neurofibromatosis type 2 protein merlin/schwannomin. Eur J Cell Biol 72:46–53PubMedGoogle Scholar
  502. Schmucker B, Tang Y, Kressel M (1999) Novel alternatively spliced isoforms of the neurofibromatosis type 2 tumor suppressor are targeted to the nucleus and cytoplasmic granules. Hum Mol Genet 8:1561–1570PubMedCrossRefGoogle Scholar
  503. Scoles DR, Baser ME, Pulst SM (1996) A missense mutation in the neurofibromatosis 2 gene occurs in patients with mild and severe phenotypes. Neurology 47:544–546PubMedCrossRefGoogle Scholar
  504. Scoles DR, Huynh DP, Morcos PA et al. (1998) Neurofibromatosis 2 tumour suppressor schwannomin interacts with betall-spectrin. Nat Genet 18:354–359PubMedCrossRefGoogle Scholar
  505. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735PubMedGoogle Scholar
  506. Seizinger BR, Martuza RL, Gusella JF (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322:644–647PubMedCrossRefGoogle Scholar
  507. Seizinger BR, Rouleau GA, Lane AH et al. (1987 a) Linkage analysis in von Recklinghausen neurofibromatosis (NF1) with DNA markers for chromosome 17. Genomics 1:346–348PubMedCrossRefGoogle Scholar
  508. Seizinger BR, Rouleau GA, Ozelius LJ et al. (1987 b) Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 49:589–594PubMedCrossRefGoogle Scholar
  509. Seizinger BR, Monte S de la, Atkins L, Gusella JF, Martuza RL (1987c) Molecular genetic approach to human meningioma: loss of genes on chromosome 22. Proc Natl Acad Sci USA 84:5419–5423PubMedCrossRefGoogle Scholar
  510. Sekido Y, Pass HI, Bader S et al. (1995) Neurofibromatosis type 2 (NF2) gene is somatically mutated in mesothelioma but not in lung cancer. Cancer Res 55:1227–1231PubMedGoogle Scholar
  511. Seppälä MT, Sainio MA, Haltia MJ, Kinnunen JJ, Setälä KH, Jääskeläinen JE (1998) Multiple schwannomas: schwannomatosis or neurofibromatosis type2? J Neurosurg 89:36–41PubMedCrossRefGoogle Scholar
  512. Serra E, Puig S, Otero D et al. (1997) Confirmation of a double-hit model for the NF1 gene in benign neurofibro-mas. Am J Hum Genet 61:512–519PubMedCrossRefGoogle Scholar
  513. Shannon KM, O'Connell P, Martin GA et al. (1994) Loss of the normal allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. N Engl J Med 336:597–601CrossRefGoogle Scholar
  514. Shaw RJ, McClatchey AI, Jacks T (1998 a) Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem 273:7757–7764PubMedCrossRefGoogle Scholar
  515. Shaw RJ, McClatchey AI, Jacks T (1998 b) Localization and functional domains of the neurofibromatosis type II tumor suppressor, merlin. Cell Growth Differ 9:287–296PubMedGoogle Scholar
  516. Sheela S, Riccardi VM, Ratner N (1990) Angiogenic and invasive properties of neurofibroma Schwann cells. J Cell Biol 111:645–653PubMedCrossRefGoogle Scholar
  517. Shen MH, Harper PS, Upadhyaya M (1996) Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet 33:2–17PubMedCrossRefGoogle Scholar
  518. Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608PubMedGoogle Scholar
  519. Sherman L, Sleeman J, Herrlich P, Ponta H (1994) Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6:726–733PubMedCrossRefGoogle Scholar
  520. Sherman L, Sleeman J, Dali P et al. (1996) The CD44 proteins in embryonic development and in cancer. Curr Top Microbiol Immunol 213:249–269PubMedCrossRefGoogle Scholar
  521. Sherman L, Xu H-M, Geist RT et al. (1997 a) Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15:2505–2509PubMedCrossRefGoogle Scholar
  522. Sherman L, Jacoby LB, Lampe J et al. (1997 b) CD44 expression is aberrant in benign Schwann cell tumors possessing mutations in the neurofibromatosis type 2, but not type 1, gene. Cancer Res 57:4889–4897PubMedGoogle Scholar
  523. Sherman L, Daston MM, Ratner N (1998) Neurofibromin: distribution, cell biology and role in neurofibromatosis type 1. In: Upadhyaya M, Cooper DN (eds) Neurofibromatosis type 1: from genotype to phenotype. BIOS Scientific Pubi, Oxford, pp 113–126Google Scholar
  524. Shu J, Lee JH, Harwalkar JA, Oh-Siskovic S, Stacey DW, Golubic M (1999) Adenovirus-mediated gene transfer of dominant negative Ha-Ras inhibits proliferation of primary meningioma cells. Neurosurgery 44:579–587PubMedCrossRefGoogle Scholar
  525. Side L, Taylor B, Cayouette et al. (1997) Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 336:1713–1720PubMedCrossRefGoogle Scholar
  526. Side LE, Emanuel PD, Taylor B et al. (1998) Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis type 1. Blood 92:267–272PubMedGoogle Scholar
  527. Silva AJ, Frankland PW, Marowitz Z et al. (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15:281–284PubMedCrossRefGoogle Scholar
  528. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148PubMedCrossRefGoogle Scholar
  529. Simon M, Deimling A von, Larson JJ et al. (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701PubMedGoogle Scholar
  530. Simons PC, Pietromonaco SF, Reczek D, Bretscher A, Elias L (1998) C-terminal threonine phosphorylation activates ERM proteins to link the cell’s cortical lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun 253:561–565PubMedCrossRefGoogle Scholar
  531. Skolnick MH, Ponder B, Seizinger B (1987) Linkage of NF1 to 12 chromosome 17 markers: a summary of eight concurrent reports. Genomics 1:382–383PubMedCrossRefGoogle Scholar
  532. Skuse GR, Cappione AJ (1997) RNA processing and clinical variability in neurofibromatosis type 1 (NF1). Hum Mol Genet 6:1707–1712PubMedCrossRefGoogle Scholar
  533. Skuse GR, Kosciolek BA, Rowley PT (1989) Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromosomes Cancer 1:36–41PubMedCrossRefGoogle Scholar
  534. Skuse GR, Kosciolek BA, Rowley PT (1991) The neurofibroma in von Recklinghausen neurofibromatosis has an unicellular origin. Am J Hum Genet 49:600–607PubMedGoogle Scholar
  535. Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC (1996) The neurofibromatosis type 1 messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 24:478–486PubMedCrossRefGoogle Scholar
  536. Slave I, MacCollin MM, Ddunn M et al. (1995) Exon scanning for mutations of the NF2 gene in pediatric ependymomas, rhabdoid tumors and meningiomas. Int J Cancer 64:243–247CrossRefGoogle Scholar
  537. Smith RW (1849, 1989) A treatise on the pathology, diagnosis and treatment of neuroma. Hodges and Smith, Dublin. Clin Orthop 245:3–9Google Scholar
  538. Smith G, Stanley LA, Sim E, Strange RC, Wolf CR (1995) Metabolic polymorphisms and cancer susceptibility. Cancer Surv 25:27–65PubMedGoogle Scholar
  539. Sobel RA (1993) Vestibular (acoustic) schwannomas: histologic features in neurofibromatosis 2 and in unilateral cases. J Neuropathol Exp Neurol 52:106–113PubMedCrossRefGoogle Scholar
  540. Stangl AP, Wellenreuther R, Lenartz D et al. (1997) Clonality of multiple meningiomas. J Neurosurg 86:853–858PubMedCrossRefGoogle Scholar
  541. Stark M, Assum G, Kaufmann D, Kehrer H, Krone W (1992) Analysis of segregation and expression of an identified mutation at the neurofibromatosis type 1 locus. Hum Genet 90:356–359PubMedCrossRefGoogle Scholar
  542. Stemmer-Rachamimov AO, Xu L, Gonzalez-Agosti C et al. (1997) Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol 151:1649–1654PubMedGoogle Scholar
  543. Stemmer-Rachamimov AO, Nielsen GP, Rosenberg AE et al. (1998) The NF2 gene and merlin protein in human osteosarcomas. Neurogenetics 2:73–74Google Scholar
  544. Stephens K, Kayes L, Riccardi VM, Rising M, Sybert VP, Pagnon RA (1992) Preferential mutation of the neurofibromatosis type 1 gene in paternally derived chromosomes. Hum Genet 88:279–282PubMedCrossRefGoogle Scholar
  545. Stewart HJS, Eccleston PA, Jessen KR, Mirsky R (1991) Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth. J Neurosci Res 30:346–352PubMedCrossRefGoogle Scholar
  546. Stocker KM, Baizer L, Coston T, Sherman L, Ciment G (1995) Regulated expression of neurofibromin in migrating neural crest cells of avian embryos. J Neurobiol 27:535–552PubMedCrossRefGoogle Scholar
  547. Stokowski RP, Cox DR (2000) Functional analysis of the neurofibromatosis type 2 protein by means of diseasecausing point mutations. Am J Hum Genet 66:873–891PubMedCrossRefGoogle Scholar
  548. Streubel B, Latta E, Kehrer-Sawatzki H, Hoffmann GF, Fonatsch C, Rehder H (1999) Somatic mosaicism of a greater than 1.7-Mb deletion of genomic DNA involving the entire NF1 gene as verified by FISH: further evidence for a contiguous gene syndrome in 17qll.2. Am J Med Genet 87:12–16PubMedCrossRefGoogle Scholar
  549. Sundaram V, Lee JH, Harwalkar JA et al. (1997) Reduced expression of neurofibromin in human meningiomas. Br J Cancer 76:747–756PubMedCrossRefGoogle Scholar
  550. Suzuki Y, Suzuki H, Kayama T et al. (1991) Brain tumors predominantly express the neurofibromatosis type 1 gene transcripts containing the 63 base insert in the region coding for GTPase activating protein-related domain. Biochem Biophys Res Commun 181:955–961PubMedCrossRefGoogle Scholar
  551. Suzuki H, Takahashi K, Kubota Y, Shibahara S (1992) Molecular cloning of a cDNA coding for neurofibromatosis type 1 protein isoform lacking the domain related to ras GTPase-activating protein. Biochem Biophys Res Commun 187:984–990PubMedCrossRefGoogle Scholar
  552. Suzuki H, Ozawa N, Taga C, Kano T, Hattori M, Sakaki Y (1994) Genomic analysis of a NF1 related pseudogene on human chromosome 21. Gene 147:277–280PubMedCrossRefGoogle Scholar
  553. Swift M, Sholman L, Perry M, Chase C (1976) Malignant neoplasms in the families of patients with ataxia-telangiectasia. Cancer Res 36:209–215PubMedGoogle Scholar
  554. Taguchi T, Jhanwar SC, Siegfried JM, Keller SM, Testa JR (1993) Recurrent deletions of specific chromosomal sites in lp, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res 53:4349–4355PubMedGoogle Scholar
  555. Takahashi K, Sasaki T, Mammoto A et al. (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23.371–23.375Google Scholar
  556. Takahashi K, Sasaki T, Mammoto A et al. (1998) Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene 16:3279–3284PubMedCrossRefGoogle Scholar
  557. Takahashi T, Ueno H, Shibuya M (1999) VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18:2221–2230PubMedCrossRefGoogle Scholar
  558. Takeshima H, Izawa I, Lee PS, Safdar N, Levin VA, Saya H (1994) Detection of cellular proteins that interact with the NF2 tumor suppressor gene product. Oncogene 9:2135–2144PubMedGoogle Scholar
  559. Takeuchi K, Sato N, Kasahara H et al. (1994) Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J Cell Biol 125:1371–1384PubMedCrossRefGoogle Scholar
  560. Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Toh-e A (1990 b) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 10:4303–4313PubMedGoogle Scholar
  561. Teixeira F, Martinez-Palomo A, Riccardi VM, Fernanez-Diez J (1988) Vascular changes in cutaneous neurofibromas. Neurofibromatosis 1:5–16PubMedGoogle Scholar
  562. Tenan M, Colombo BM, Cajola L, Polio B, Broggi G, Finocchiaro G (1993) Low frequency of NF1 gene mutations in malignant gliomas. Eur J Cancer 29:1217–1218Google Scholar
  563. Teraoka SN, Telatar M, Becker-Catania S et al. (1999) Splicing defects in the ataxia-telangiectasia gene; ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631PubMedCrossRefGoogle Scholar
  564. The I, Murthy AE, Hannigan GE et al. (1993) Neurofibromatosis type 1 gene mutations in neuroblastoma. Nat Genet 3:62–66PubMedCrossRefGoogle Scholar
  565. The I, Hannigan GE, Cowley GS et al. (1997) Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276:791–794PubMedCrossRefGoogle Scholar
  566. Theiler R, Stocker H, Boltshauser E (1991) Zur Klassifizierung atypischer Neurofibromatose-Formen. Schweiz Med Wochenschr 121:446–455PubMedGoogle Scholar
  567. Thiel G, Marczinek K, Neumann R, Witkowski R, Marchuk D, Nürnberg P (1995) Somatic mutations in the neurofibromatosis 1 gene in gliomas and primitive neuroectodermal tumors. Anticancer Res 15:2495–2500PubMedGoogle Scholar
  568. Tikoo A, Varga M, Ramesh V, Gusella J, Maruta H (1994) An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 269:23.387–23.390Google Scholar
  569. Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F (1997) Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 9:153–158PubMedCrossRefGoogle Scholar
  570. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545PubMedCrossRefGoogle Scholar
  571. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215PubMedCrossRefGoogle Scholar
  572. Trofatter JA, MacCollin M M, Rutter JL et al. (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800PubMedCrossRefGoogle Scholar
  573. Tsai M-H, Yu C-L, Wie F-S, Stacey DW (1989) The effect of GTPase activating protein upon Ras is inhibited by mitogenically responsive lipids. Science 243:522–526PubMedCrossRefGoogle Scholar
  574. Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 274:34.507–34.510CrossRefGoogle Scholar
  575. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126:391–401PubMedCrossRefGoogle Scholar
  576. Twist EC, Ruttledge MH, Rousseau M et al. (1994) The neurofibromatosis type 2 gene is inactivated in schwannomas. Hum Mol Genet 3:147–151PubMedCrossRefGoogle Scholar
  577. Uchida T, Matozaki T, Suzuki T et al. (1992) Expression of two types of neurofibromatosis type 1 gene transcripts in gastric cancers and comparison of GAP activities. Biochem Biophys Res Commun 187:332–339PubMedCrossRefGoogle Scholar
  578. Uchida T, Wada C, Ishida H et al. (1995) Infrequent involvement of mutations on neurofibromatosis type 1, H-ras, K-ras and N-ras in urothelial tumors. Urol Int 55:63–67PubMedCrossRefGoogle Scholar
  579. Ueki K, Wen-Bin C, Narita Y, Asai A, Kirino T (1999) Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Cancer Res 59:5995–5998PubMedGoogle Scholar
  580. Uitto J, Matsuoka LY, Chu ML, Pihlajaniemi T, Prockop DJ (1986) Connective tissue biochemistry of neurofibromas. Ann NY Acad Sci 486:271–286PubMedCrossRefGoogle Scholar
  581. Ullrich A, Gray A, Berman C, Dull TJ (1983) Human ß nerve growth factor gene sequence highly homologous to that of mouse. Nature 303:821–825PubMedCrossRefGoogle Scholar
  582. Upadhyaya M, Cooper DN (1998) The mutational spectrum in neurofibromatosis 1 and its underlying mechanisms. In: Upadhyaya M, Cooper DN (eds) Neurofibromatosis type 1: from genotype to phenotype. BIOS Scientific Pubi, Oxford, pp 65–82Google Scholar
  583. Upadhyaya M, Shen M, Cherryson A et al. (1992) Analysis of mutations at the neurofibromatosis 1 (NF1) locus. Hum Mol Genet 1:735–740PubMedGoogle Scholar
  584. Upadhyaya M, Osborn M, Maynard J, Harper P (1996) Characterization of six mutations in exon 37 of neurofibromatosis type 1 gene. Am J Med Genet 67:421–423PubMedCrossRefGoogle Scholar
  585. Upadhyaya M, Osborn MJ, Maynard J, Kim MR, Tamanoi F, Cooper D N (1997) Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 99:88–92PubMedCrossRefGoogle Scholar
  586. Varnhagen CK, Lewin S, Das JP, Bowen P, Ma K, Klimek M (1988) Neurofibromatosis and psychological processes. J Dev Behav Pediatr 9:257–265PubMedCrossRefGoogle Scholar
  587. Verhoef S, Bakker L, Tempelaars AM et al. (1999) High rate of mosaicism in tuberous sclerosis complex. Am J Hum Genet 64:1632–1637PubMedCrossRefGoogle Scholar
  588. Virchow R (1847) Ueber die reform der pathologischen und therapeutische Anschauungen durch die mikroskopischen Untersuchungen. Virchows Arch 1:207–255CrossRefGoogle Scholar
  589. Viskochil DH (1998) Gene structure and expression. In: Upadhyaya M, Cooper DN (eds) Neurofibromatosis type 1: from genotype to phenotype. BIOS Scientific Pubi, Oxford, pp 39–56Google Scholar
  590. Viskochil D, Carey JC (1994) Alternate and related forms of the neurofibromatoses. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman & Hall, London New York, pp 445–474Google Scholar
  591. Viskochil D, Buchberg AM, Xu G et al. (1990) Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192PubMedCrossRefGoogle Scholar
  592. Viskochil D, Cawthon R, O'Connell P et al. (1991) The gene encoding the oligodendrocyte-myelin glycoprotein is embedded within the neurofibromatosis type 1 gene. Mol Cell Biol 11:906–912PubMedGoogle Scholar
  593. Vogel KS, Parada LF (1998) Sympathetic neuron survival and proliferation are prolonged by loss of p53 and neurofibromin. Mol Cell Neurosci 11:19–28PubMedCrossRefGoogle Scholar
  594. Vogel K S, Brannan CI, Jenkins NA, Copeland NG, Parada LF (1995) Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell 82:733–742PubMedCrossRefGoogle Scholar
  595. Vogel K S, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF (1999) Mouse tumor model for neurofibromatosis type 1. Science 286:2176–2179PubMedCrossRefGoogle Scholar
  596. Von Deimling A, Louis DN, Menon AG et al. (1993) Deletions on the long arm of chromosome 17 in pilocytic astrocytoma. Acta Neuropathol 86:81–85CrossRefGoogle Scholar
  597. Von Deimling A, Larson J, Wellenreuther R et al. (1999) Clonal origin of recurrent meningiomas. Brain Pathol 9:645–650CrossRefGoogle Scholar
  598. Von Recklinghausen FD (1882) Ueber die multiplen Fibrome der Haut und ihre Beziehung zu den multiplen Neuromen. Hirschwald, BerlinGoogle Scholar
  599. Vos JM (1995) DNA repair mechanisms: impact on human diseases and cancer. Springer, Berlin Heidelberg New YorkGoogle Scholar
  600. Waardenburg PJ (1918) Heterochrome en melanosis. Ned Tijdschr Geneeskd 2:1453–1455Google Scholar
  601. Wallace MR, Marchuk DA, Anderson LB et al. (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186PubMedCrossRefGoogle Scholar
  602. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS (1991) A de novo alu insertion results in neurofibromatosis type 1. Nature 353:864–866PubMedCrossRefGoogle Scholar
  603. Wallace MR, Rasmussen SA, Lim IT, Gray BA, Zori RT, Muir D (2000) Culture of cytogenetically abnormal Schwann cells from benign and malignant NF1 tumors. Genes Chromosomes Cancer 27:117–123PubMedCrossRefGoogle Scholar
  604. Wang Q, Lasset C, Desseigne F et al. (1999) Neurofibromatosis and early onset of cancers in hMLHl-deficient children. Cancer Res 59:294–297PubMedGoogle Scholar
  605. Weiss B, Bollag G, Shannon K (1999) Hyperactive Ras as a therapeutic target in neurofibromatosis type 1. Am J Med Genet 89:14–22PubMedGoogle Scholar
  606. Wellenreuther R, Kraus JA, Lenartz D et al. (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–832PubMedGoogle Scholar
  607. Wellenreuther R, Waha A, Vogel Y et al. (1997) Quantitative analysis of neurofibromatosis type 2 gene transcripts in meningiomas supports the concept of distinct molecular variants. Lab Invest 77:601–606PubMedGoogle Scholar
  608. Welling DB, Guida M, Göll F et al. (1996) Mutational spectrum in the neurofibromatosis type 2 gene in sporadic and familial schwannomas. Hum Genet 98:189–193PubMedCrossRefGoogle Scholar
  609. Werb Z (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91:439–442PubMedCrossRefGoogle Scholar
  610. Wickens M (1990) How the messenger got its tail: addition of poly(A) in the nucleus. Trends Biochem Sci 15:277–281PubMedCrossRefGoogle Scholar
  611. Wiestier OD, Radner H (1994) Pathology of neurofibromatosis type 1 and 2. In: Huson SM; Hughes RAC (eds) The neurofibromatoses. A pathogenetic and clinical overview. Chapman S. cerevisiae. Cell 62:835–841Google Scholar
  612. Xu G, O'Connell P, Stevens J, White R (1992 a) Characterization of human adenylate kinase 3 (AK3) cDNA and mapping of the AK3 pseudogene to an intron of the NF1 gene. Genomics 13:537–542PubMedCrossRefGoogle Scholar
  613. Xu W, Mulligan LM, Ponder MA et al. (1992 b) Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer 4:337–342PubMedCrossRefGoogle Scholar
  614. Yaegashi S, Sachse R, Ohuchi N, Mori S, Sekiya T (1995) Low incidence of a nucleotide sequence alteration of the neurofibromatosis 2 gene in human breast cancers. Jpn J Cancer Res 86:929–933PubMedCrossRefGoogle Scholar
  615. Yang P, Grufferman S, Khoury MJ et al. (1995) Association of childhood rhabdomyosarcoma with neurofibromatosis type 1 and birth defects. Genet Epidemiol 12:467–474PubMedCrossRefGoogle Scholar
  616. Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM (1996) Progression of coronary atherosclerosis is associated with a genetic variant of the human stromelysin-1 promotor which results in reduced gene expression. J Biol Chem 271:13.055–13.060Google Scholar
  617. Ye F, Cayre YE, Thang M-N (1999) Evidence for a novel Ras-GAP-associated protein of 105 kDa in both mature tro-phoblasts and differentiating choriocarcinoma cells. Biochem Biophys Res Commun 263:523–527PubMedCrossRefGoogle Scholar
  618. Ylä-Outinen H, Aaltonen V, Bjorkstrand AS et al. (1998) Upregulation of tumor suppressor protein neurofibromin in normal human wound healing and in vitro evidence for platelet derived growth factor (PDGF) and transforming growth factor-betal (TGF-/?1) elicited increase in neurofibromin mRNA steady-state levels in dermal fibroblasts. J Invest Dermatol 110:232–237PubMedCrossRefGoogle Scholar
  619. Yu C-L, Tsai M-H, Stacey DW (1988) Cellular ras activity and phospholipid metabolism. Cell 52:63–71PubMedCrossRefGoogle Scholar
  620. Zang KD (1982) Cytological and cytogenetical studies on human meningioma. Cancer Genet Cytogenet 6:249–274PubMedCrossRefGoogle Scholar
  621. Zang KD, Singer H (1967) Chromosomal consitution of meningiomas. Nature 216:84–85PubMedCrossRefGoogle Scholar
  622. Zankl H, Zang KD (1972) Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 14:167–169PubMedCrossRefGoogle Scholar
  623. Zhang Y, Derynck R (1999) Regulation of smad signalling by protein associations and signalling crosstalk. Cell Biol 9:274–279Google Scholar
  624. Zhang Y, Xiong Y, Yarbrought WG (1998 a) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and the p53 tumor suppression pathways. Cell 92:725–734PubMedCrossRefGoogle Scholar
  625. Zhang Y, Vik TA, Ryder JW et al. (1998 b) Nfl regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 187:1893–1902PubMedCrossRefGoogle Scholar
  626. Zhu J, Frosch MP, Busqué L et al. (1995) Analysis of meningiomas by methylation-and transcription-based clonality assays. Cancer Res 55:3865–3872PubMedGoogle Scholar
  627. Zlotogora J (1993) Mutations in von Recklinghausen neurofibromatosis: an hypothesis. Am J Med Genet 46:182–184PubMedCrossRefGoogle Scholar
  628. Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL, Der CJ (1998) Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17:1415–1438PubMedCrossRefGoogle Scholar
  629. Zucman-Rossi J, Legoix P, Der Sarkissian H et al. (1998) NF2 gene in neurofibromatosis type 2 patients. Hum Mol Genet 7:2095–2101PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Winfrid Krone
    • 1
  • Hildegard Kehrer-Sawatzki
    • 1
  1. 1.Abteilung HumangenetikUniversitätsklinikum UlmUlm

Personalised recommendations