Skip to main content

Familiäres Melanom

  • Chapter
  • 121 Accesses

Part of the book series: Molekulare Medizin ((MOLMED))

Zusammenfassung

Bereits 1820 wurde von W. A. Norris ein erster Fall eines familiären Melanoms in englischer Sprache beschrieben (Norris 1820). Dabei wurde bereits herausgestellt, dass familiär auffällige Muttermale vorhanden waren, und eine Erblichkeit des Tumorleidens angenommen:

„It is remarkable that this gentleman’s father, about thirty years ago, died of a similar disease. A surgeon of this town attended him, and he informed me that a number of small tumours appeared between the shoulders… This tumour, I have remarked, originated in a mole, and it is worth mentioning, that not only my patient, and his children had many moles on various parts of their bodies, but also his own father and brothers had many of them. The youngest son had one of these marks exactly in the same place where the disease in his father first manifested itself. These facts, together with a case that has come under my notice, rather similar, would incline me to believe that this disease is hereditary.“ (Norris 1820).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ackerman AB (1988) What naevus is dysplastic, a syndrome and the commonest precursor of malignant melanoma? A riddle and an answer. Histopathology 13:241–256

    PubMed  CAS  Google Scholar 

  • Ackerman AB, Milde P (1992) Naming acquired melanocytic nevi. Common and dysplastic, normal and atypical, or Unna, Miescher, Spitz, and Clark? Am J Dermatopathol 14:447–453

    PubMed  CAS  Google Scholar 

  • Aitken J, Welch J, Duffy D et al. (1999) CDKN2A variants in a population-based sample of Queensland families with melanoma. J Natl Cancer Inst 91:446–452

    PubMed  CAS  Google Scholar 

  • Anderson DE, Smith JLJ, McBride CM (1967) Hereditary aspects of malignant melanoma. JAMA 200:741–746

    PubMed  CAS  Google Scholar 

  • Ang CG, Kelly JW, Fritschi L, Dowling JP (1998) Characteristics of familial and non-familial melanoma in Australia. Melanoma Res 8:459–464

    PubMed  CAS  Google Scholar 

  • Bale SJ, Greene MH, Murray C, Goldin LR, Johnson AH, Mann D (1985) Hereditary malignant melanoma is not linked to the HLA complex on chromosome 6. Int J Cancer 36:439–443

    PubMed  CAS  Google Scholar 

  • Bale SJ, Dracopoli NC, Tucker MA et al. (1989) Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N Engl J Med 320:1367–1372

    PubMed  CAS  Google Scholar 

  • Barger BO, Acton RT, Soong SJ, Roseman J, Balch C (1982) Increase of HLA-DR4 in melanoma patients from Alabama. Cancer Res 42:4276–4279

    PubMed  CAS  Google Scholar 

  • Barnhill RL, Roush GC (1991) Correlation of clinical and histopathologic features in clinically atypical melanocytic nevi. Cancer 67:3157–3164

    PubMed  CAS  Google Scholar 

  • Barnhill RL, Roush GC, Duray PH (1990) Correlation of histologic architectural and cytoplasmic features with nuclear atypia in atypical (dysplastic) nevomelanocytic nevi. Hum Pathol 21:51–58

    PubMed  CAS  Google Scholar 

  • Bataille V, Bishop JA, Sasieni P et al. (1996) Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study. Br J Cancer 73:1605–1611

    PubMed  CAS  Google Scholar 

  • Bergman W, Watson P, Jong J de, Lynch HT, Fusaro RM (1990) Systemic cancer and the FAMMM syndrome. Br J Cancer 61:932–936

    PubMed  CAS  Google Scholar 

  • Bergman W, Gruis NA, Sandkuijl LA, Frants RR (1994) Genetics of seven Dutch familial atypical multiple molemelanoma syndrome families: a review of linkage results including chromosomes 1 and 9. J Invest Dermatol 103:122S–125S

    PubMed  CAS  Google Scholar 

  • Bliss JM, Ford D, Swerdlow AJ et al. (1995) Risk of cutaneous melanoma associated with pigmentation characteristics and freckling: systematic overview of 10 case-control studies. The International Melanoma Analysis Group (IMAGE). Int J Cancer 62:367–376

    PubMed  CAS  Google Scholar 

  • Borg A, Johannsson U, Johannsson O et al. (1996) Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res 56:2497–2500

    PubMed  CAS  Google Scholar 

  • Bressac-de Pillerets B, Soufir N, Chompret A (1997) Germ-line mutations in p16 and CDK4 genes in 38 melanoma families. Melanoma Res 7:S132

    Google Scholar 

  • Cairns P, Mao L, Merlo A et al. (1994) Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science 265:415–417

    PubMed  CAS  Google Scholar 

  • Cannon AL, Goldgar DE, Wright EC et al. (1990) Evidence against the reported linkage of the cutaneous melanomadysplastic nevus syndrome locus to chromosome Ip36. Am J Hum Genet 46:912–918

    Google Scholar 

  • Cannon AL, Goldgar DE, Meyer LJ et al. (1992) Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science 258:1148–1152

    Google Scholar 

  • Carey WP Jr, Thompson CJ, Synnestvedt M et al. (1994) Dysplastic nevi as a melanoma risk factor in patients with familial melanoma. Cancer 74:3118–3125

    PubMed  Google Scholar 

  • Castellano M, Parmiani G (1999) Genes involved in melanoma: an overview of INK4a and other loci. Melanoma Res 9:421–432

    PubMed  CAS  Google Scholar 

  • Cawley E (1952) Genetic aspects of malignant melanoma. Arch Dermatol 65:440–450

    CAS  Google Scholar 

  • Clark WH Jr, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ (1978) Origin of familial malignant melanomas from heritable melanocytic lesions. “The B-K mole syndrome”. Arch Dermatol 114:732–738

    PubMed  Google Scholar 

  • Czarnecki D, Nicholson I, Tait B, Nash C (1993) HLA DR4 is associated with the development of multiple basal cell carcinomas and malignant melanoma. Dermatology 187:16–18

    PubMed  CAS  Google Scholar 

  • Demetrick DJ, Zhang H, Beach DH (1994) Chromosomal mapping of human CDK2, CDK4, and CDK5 cell cycle kinase genes. Cytogenet Cell Genet 66:72–74

    PubMed  CAS  Google Scholar 

  • Dracopoli NC, Fountain JW (1996) CDKN2 mutations in melanoma. Cancer Surv 26:115–132

    PubMed  CAS  Google Scholar 

  • Dracopoli NC, Alhadeff B, Houghton AN, Old LJ (1987) Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma. Cancer Res 47:3995–4000

    PubMed  CAS  Google Scholar 

  • Elder DE, Goldman LI, Goldman SC, Greene MH, Clark WHJ (1980) Dysplastic nevus syndrome: a phenotypic association of sporadic cutaneous melanoma. Cancer 46:1787–1794

    PubMed  CAS  Google Scholar 

  • FitzGerald MG, Harkin DP, Silva AS et al. (1996) Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93:8541–8545

    PubMed  CAS  Google Scholar 

  • Ford D, Bliss JM, Swerdlow AJ et al. (1995) Risk of cutaneous melanoma associated with a family history of the disease. The International Melanoma Analysis Group (IMAGE). Int J Cancer 62:377–381

    PubMed  CAS  Google Scholar 

  • Foulkes WD, Flanders TY, Pollock PM, Hayward NK (1997) The CDKN2A (p16) gene and human cancer. Mol Med 3:5–20

    PubMed  CAS  Google Scholar 

  • Fountain JW, Karayiorgou M, Ernstoff MS et al. (1992) Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Natl Acad Sci USA 89:10.557–10.561

    Google Scholar 

  • Garbe C, Büttner P, Weiss J et al. (1994) Risk factors for developing cutaneous melanoma and criteria for identifying persons at risk: multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J Invest Dermatol 102:695–699

    PubMed  CAS  Google Scholar 

  • Geller AC, Koh HK, Miller DR, Lew RA (1992) Practices and beliefs concerning screening family members of patients with melanoma. Results of a survey of New England dermatologists. J Am Acad Dermatol 26:419–422

    PubMed  CAS  Google Scholar 

  • Goldstein AM, Tucker MA (1997) Screening for CDKN2A mutations in hereditary melanoma. J Natl Cancer Inst 89:676–678

    PubMed  CAS  Google Scholar 

  • Goldstein AM, Dracopoli NC, Ho EC et al. (1993) Further evidence for a locus for cutaneous malignant melanomadysplastic nevus (CMM/DN) on chromosome 1p, and evidence for genetic heterogeneity. Am J Hum Genet 52:537–550

    PubMed  CAS  Google Scholar 

  • Goldstein AM, Fraser MC, Struewing JP et al. (1995) Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 333:970–974

    PubMed  CAS  Google Scholar 

  • Goldstein AM, Goldin LR, Dracopoli NC, Clark WHJ, Tucker MA (1996) Two-locus linkage analysis of cutaneous malignant melanoma/dysplastic nevi. Am J Hum Genet 58:1050–1056

    PubMed  CAS  Google Scholar 

  • Grange F, Chompret A, Guilloud BM et al. (1995) Comparison between familial and nonfamilial melanoma in France. Arch Dermatol 131:1154–1159

    PubMed  CAS  Google Scholar 

  • Greene MH (1999) The genetics of hereditary melanoma and nevi — 1998 update. Cancer 86:1644–1657

    Google Scholar 

  • Greene MH, Clark-WH J, Tucker MA, Kraemer KH, Elder DE, Fraser MC (1985) High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Ann Intern Med 102:458–465

    PubMed  CAS  Google Scholar 

  • Gruis NA, Bergman W, Frants RR (1990) Locus for susceptibility to melanoma on chromosome 1p. N Engl J Med 322:853–854

    PubMed  CAS  Google Scholar 

  • Gruis NA, Sandkuijl LA, Van der Velden P, Bergman W, Frants RR (1995) CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple-mole melanoma (FAMMM) syndrome families. Melanoma Res 5:169–177

    PubMed  CAS  Google Scholar 

  • Gruis NA, Van der Velden P, Sandkuijl LA et al. (1995) Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 10:351–353

    PubMed  CAS  Google Scholar 

  • Gruis NA, Van der Velden P, Bergman W, Frants RR (1998) Genetics of familial atypical multiple mole-melanoma (FAMMM) syndrome in The Netherlands: how far have we come? Bull Cancer 85:627–630

    PubMed  CAS  Google Scholar 

  • Gruis N, Van der Velden P, Bergmann WFR (1999) Familial melanoma; CDKN2A and beyond. J Invest Dermatol Symp Proc 4:50–54

    CAS  Google Scholar 

  • Grulich AE, Bataille V, Swerdlow AJ et al. (1996) Naevi and pigmentary characteristics as risk factors for melanoma in a high-risk population: a case-control study in New South Wales, Australia. Int J Cancer 67:485–491

    PubMed  CAS  Google Scholar 

  • Guldberg P, Kirkin AF, Gronbaek K, Thor SP, Ahrenkiel V, Zeuthen J (1997) Complete scanning of the CDK4 gene by denaturing gradient gel electrophoresis: a novel missense mutation but low overall frequency of mutations in sporadic metastatic malignant melanoma. Int J Cancer 72:780–783

    PubMed  CAS  Google Scholar 

  • Hamada K, Kohno T, Kawanishi M, Ohwada S, Yokota J (1998) Association of CDKN2A(p16)/CDKN2B(p15) alterations and homozygous chromosome arm 9p deletions in human lung carcinoma. Genes Chromosomes Cancer 22:232–240

    PubMed  CAS  Google Scholar 

  • Harland M, Meloni R, Gruis N et al. (1997) Germline mutations of the CDKN2 gene in UK melanoma families. Hum Mol Genet 6:2061–2067

    PubMed  CAS  Google Scholar 

  • Hawkins BR, Dawkins RL, Hockey A, Houliston JB, Kirk RL (1981) Evidence for linkage between HLA and malignant melanoma. Tissue Antigens 17:540–541

    PubMed  CAS  Google Scholar 

  • Hayward NK (1996) The current situation with regard to human melanoma and genetic inferences. Curr Opin Oncol 8:136–142

    PubMed  CAS  Google Scholar 

  • Herbst RA, Gutzmer R, Matiaske F et al. (1997) Further evidence for ultraviolet light induction of CDKN2 (p16INK4) mutations in sporadic melanoma in vivo. J Invest Dermatol 108:950

    PubMed  CAS  Google Scholar 

  • Herbst RA, Mommert S, Schubach J, Podewski EK, Kapp A, Weiss J (1999) Allelic loss at the p73 locus (1p36.33) is infrequent in malignant melanoma. Arch Dermatol Res 291:362–364

    PubMed  CAS  Google Scholar 

  • Holly EA, Aston DA, Cress RD, Ahn DK, Kristiansen JJ (1995) Cutaneous melanoma in women. II. Phenotypic characteristics and other host-related factors. Am J Epidemiol 141:934–942

    PubMed  CAS  Google Scholar 

  • Hussussian CJ, Struewing JP, Goldstein AM et al. (1994) Germline p16 mutations in familial melanoma. Nat Genet 8:15–21

    PubMed  CAS  Google Scholar 

  • Jadayel DM, Lukas J, Nacheva E et al. (1997) Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin’s lymphomas. Functional studies in a cell line (Granta 519). Leukemia 11:64–72

    PubMed  CAS  Google Scholar 

  • Kamb A (1995) Cell-cycle regulators and cancer. Trends Genet 11:136–140

    PubMed  CAS  Google Scholar 

  • Kamb A (1996) Human melanoma genetics. J Invest Dermatol Symp Proc 1:177–182

    CAS  Google Scholar 

  • Kamb A, Gruis NA, Weaver FJ et al. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440

    PubMed  CAS  Google Scholar 

  • Kamb A, Shattuck ED, Eeles R et al. (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8:23–26

    PubMed  CAS  Google Scholar 

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95:8292–8297

    PubMed  CAS  Google Scholar 

  • Kaufmann R, Tilgen W, Garbe C (1998) Malignant melanoma. Quality Assurance Committee of the German Society of Dermatology and the Professional Organization of German Dermatologists. Hautarzt [Suppl 1] 48:S30–S38

    Google Scholar 

  • Kefford RF, Salmon J, Shaw HM, Donald JA, McCarthy WH (1991) Hereditary melanoma in Australia. Variable association with dysplastic nevi and absence of genetic linkage to chromosome 1p. Cancer Genet Cytogenet 51:45–55

    PubMed  CAS  Google Scholar 

  • Kefford RF, Newton-Bishop JA, Bergman W, Tucker MA (1999) Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: a consensus statement of the Melanoma Genetics Consortium. J Clin Oncol 17:3245–3251

    PubMed  CAS  Google Scholar 

  • Kelly JW, Holly EA, Shpall SN, Ahn DK (1989) The distribution of melanocytic naevi in melanoma patients and control subjects. Australas J Dermatol 30:1–8

    PubMed  CAS  Google Scholar 

  • Koh J, Enders GH, Dynlacht BD, Harlow E (1995) Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375:506–510

    PubMed  CAS  Google Scholar 

  • Kopf AW, Friedman RJ, Rigel DS (1990) Atypical mole syndrome. J Am Acad Dermatol 22:117–118

    PubMed  CAS  Google Scholar 

  • Kroiss MM, Bosserhoff AK, Vogt T et al. (1998) Loss of expression or mutations in the p73 tumour suppressor gene are not involved in the pathogenesis of malignant melanomas. Melanoma Res 8:504–509

    PubMed  CAS  Google Scholar 

  • Larsen CJ (1996) p16INK4a: a gene with a dual capacity to encode unrelated proteins that inhibit cell cycle progression. Oncogene 12:2041–2044

    PubMed  CAS  Google Scholar 

  • Lee JY, Dong SM, Shin MS et al. (1997) Genetic alterations of p16INK4a and p53 genes in sporadic dysplastic nevus. Biochem Biophys Res Commun 237:667–672

    PubMed  CAS  Google Scholar 

  • Lilischkis R, Sarcevic B, Kennedy C, Warlters A, Sutherland RL (1996) Cancer-associated missense and deletion mutations impair p16INK4 CDK inhibitory activity. Int J Cancer 66:249–254

    PubMed  CAS  Google Scholar 

  • Little M, Wainwright B (1995) Methylation and p16: suppressing the suppressor (comment). Nat Med 1:633–634

    PubMed  CAS  Google Scholar 

  • Liu L, Lassam NJ, Slingerland JM et al. (1995) Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene 11:405–412

    PubMed  CAS  Google Scholar 

  • Liu L, Goldstein AM, Tucker MA et al. (1997) Affected members of melanoma-prone families with linkage to 9p21 but lacking mutations in CDKN2 A do not harbor mutations in the coding regions of either CDKN2B or p19ARF. Genes Chromosomes Cancer 19:52–54

    PubMed  Google Scholar 

  • Liu L, Dilworth D, Gao LZ et al. (1999) Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 21:128–132

    PubMed  Google Scholar 

  • Lukas J, Aagaard L, Strauss M, Bartek J (1995) Oncogenic aberrations of p16INK4/CDKN2 and cyclin Dl cooperate to deregulate Gl control. Cancer Res 55:4818–4823

    PubMed  CAS  Google Scholar 

  • Lynch HT, Frichot BC, Lynch JF (1978) Familial atypical multiple mole-melanoma syndrome. J Med Genet 15:352–356

    PubMed  CAS  Google Scholar 

  • MacGeoch C, Bishop JA, Bataille V et al. (1994) Genetic heterogeneity in familial malignant melanoma. Hum Mol Genet 3:2195–2200

    PubMed  CAS  Google Scholar 

  • Mao L, Merlo A, Bedi G, et al. (1995) A novel p16INK4A transcript. Cancer Res 55:2995–2997

    PubMed  CAS  Google Scholar 

  • Merlo A, Herman JG, Mao L et al. (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTSl in human cancers. Nat Med 1:686–692

    PubMed  CAS  Google Scholar 

  • Monzon J, Liu L, Brill H et al. (1998) CDKN2A mutations in multiple primary melanomas. N Engl J Med 338:879–887

    PubMed  CAS  Google Scholar 

  • Mueller EG, Schendel DJ, Hundeiker M et al. (1984) Possible association between HLA-DR5 and superficial spreading melanoma (SSM). Int J Cancer 34:751–755

    Google Scholar 

  • Nancarrow DJ, Palmer JM, Walters MK et al. (1992) Exclusion of the familial melanoma locus (MLM) from the PND/D1S47 and MYCL1 regions of chromosome arm 1p in 7 Australian pedigrees. Genomics 12:18–25

    PubMed  CAS  Google Scholar 

  • Nancarrow DJ, Mann GJ, Holland EA et al. (1993) Confirmation of chromosome 9p linkage in familial melanoma. Am J Hum Genet 53:936–942

    PubMed  CAS  Google Scholar 

  • Nelson MA, Ariza ME, Yang JM et al. (1999) Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CDC2L) on chromosome band 1p36 in melanoma. Cancer Genet Cytogenet 108:91–99

    PubMed  CAS  Google Scholar 

  • Newton JA (1993) Familial melanoma. Clin Exp Dermatol 18:5–11

    PubMed  CAS  Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368:753–756

    PubMed  CAS  Google Scholar 

  • Norris W (1820) A case of fungoid disease. Edinb Med Surg J 16:562–565

    Google Scholar 

  • Parry D, Peters G (1996) Temperature-sensitive mutants of p16CDKN2 associated with familial melanoma. Mol Cell Biol 16:3844–3852

    PubMed  CAS  Google Scholar 

  • Pellegris G, Illeni MT, Rovini D, Vaglini M, Cascinelli N, Ghidoni A (1982) HLA complex and familial malignant melanoma. Int J Cancer 29:621–623

    PubMed  CAS  Google Scholar 

  • Piccinin S, Doglioni C, Maestro R et al. (1997) p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. Int J Cancer 74:26–30

    PubMed  CAS  Google Scholar 

  • Ping YJ, Nakatsu Y, Goldstein AM, Tucker MA, Kraemer KH, Tanaka K (1998) RPA2, a gene for the 32 kDa subunit of replication protein A on chromosome 1p35-36, is not mutated in patients with familial melanoma linked to chromosome 1p36. Melanoma Res 8:47–52

    PubMed  CAS  Google Scholar 

  • Platz A, Hansson J, Mansson BE et al. (1997) Screening of germline mutations in the CDKN2A and CDKN2B genes in Swedish families with hereditary cutaneous melanoma. J Natl Cancer Inst 89:697–702

    PubMed  CAS  Google Scholar 

  • Platz A, Hansson J, Ringborg U (1998) Screening of germline mutations in the CDK4, CDKN2C and TP53 genes in familial melanoma: a clinic-based population study. Int J Cancer 78:13–15

    PubMed  CAS  Google Scholar 

  • Pollack MS, Livingston PO (1985) HLA and DR antigen frequencies in melanoma patients: possible relation to disease prognosis. Tissue Antigens 26:262–265

    PubMed  CAS  Google Scholar 

  • Pollock PM, Spurr N, Bishop T et al. (1998) Haplotype analysis of two recurrent CDKN2A mutations in 10 melanoma families: evidence for common founders and independent mutations. Hum Mutat 11:424–431

    PubMed  CAS  Google Scholar 

  • Pomerantz J, Schreiber AN, Liégeois NJ et al. (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723

    PubMed  CAS  Google Scholar 

  • Provost N, Kopf AW, Rabinovitz HS et al. (1998) Comparison of conventional photographs and telephonically transmitted compressed digitized images of melanomas and dysplastic nevi. Dermatology 196:299–304

    PubMed  CAS  Google Scholar 

  • Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    PubMed  CAS  Google Scholar 

  • Quelle DE, Cheng M, Ashmun RA, Sherr CJ (1997) Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci USA 94:669–673

    PubMed  CAS  Google Scholar 

  • Rahbari H, Mehregan AH (1981) Sporadic atypical mole syndrome. A report of five nonfamilial B-K mole syndrome-like cases and histopathologic findings. Arch Dermatol 117:329–331

    PubMed  CAS  Google Scholar 

  • Ranade K, Hussussian CJ, Sikorski RS et al. (1995) Mutations associated with familial melanoma impair p16INK4 function. Nat Genet 10:114–116

    PubMed  CAS  Google Scholar 

  • Reymond A, Brent R (1995) p16 proteins from melanomaprone families are deficient in binding to Cdk4. Oncogene 11:1173–1178

    PubMed  CAS  Google Scholar 

  • Roth ME, Grant KJ, Ackerman AB et al. (1991) The histopathology of dysplastic nevi. Continued controversy. Am J Dermatopathol 13:38–51

    PubMed  CAS  Google Scholar 

  • Schittek B, Sauer B, Garbe C (1999) Lack of p73 mutations and late occurrence of p73 allelic deletions in melanoma tissues and cell lines. Int J Cancer 82:583–586

    PubMed  CAS  Google Scholar 

  • Serrano M (1997) The tumor suppressor protein p16INK4a. Exp Cell Res 237:7–13

    PubMed  CAS  Google Scholar 

  • Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    PubMed  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon CC, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    PubMed  CAS  Google Scholar 

  • Sigg C, Pelloni F, Schnyder UW (1989) Gehäufte Mehrfachmelanome bei sporadischem und familiärem dysplastischen Nävuszellnävus-Syndrom. Hautarzt 40:548–552

    PubMed  CAS  Google Scholar 

  • Slue W, Kopf AW, Rivers JK (1988) Total-body photographs of dysplastic nevi. Arch Dermatol 124:1239–1243

    PubMed  CAS  Google Scholar 

  • Smith E, Henley W, Knox J, Lane M (1966) Familial melanoma. Arch Intern Med 117:820–823

    PubMed  CAS  Google Scholar 

  • Soufir N, Avril MF, Chompret A et al. (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 7:209–216

    PubMed  CAS  Google Scholar 

  • Stadler WM, Olopade OI (1996) The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes. Urol Res 24:239–244

    PubMed  CAS  Google Scholar 

  • Stone S, Dayananth P, Jiang P et al. (1995) Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. Oncogene 11:987–991

    PubMed  CAS  Google Scholar 

  • Stone S, Jiang P, Dayananth P et al. (1995) Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 55:2988–2994

    PubMed  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC et al. (1998) The alternative product from the human CDKN2A locus, pl4(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014

    PubMed  CAS  Google Scholar 

  • Suzuki H, Zhou X, Yin J et al. (1995) Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. Hum Mol Genet 4:1883–1887

    PubMed  CAS  Google Scholar 

  • Tsao H, Sober AJ (1998) Ultraviolet radiation and malignant melanoma. Clin Dermatol 16:67–73

    PubMed  CAS  Google Scholar 

  • Tsao H, Benoit E, Sober AJ, Thiele C, Haluska FG (1998) Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res 58:109–113

    PubMed  CAS  Google Scholar 

  • Tsao H, Zhang X, Majewski P, Haluska FG (1999) Mutational and expression analysis of the p73 gene in melanoma cell lines. Cancer Res 59:172–174

    PubMed  CAS  Google Scholar 

  • Tucker MA, Halpern A, Holly EA et al. (1997) Clinically recognized dysplastic nevi. A central risk factor for cutaneous melanoma. JAMA 277:1439–1444

    PubMed  CAS  Google Scholar 

  • Turkington R (1965) Familial factors in malignant melanoma. JAMA 192:77–82

    PubMed  CAS  Google Scholar 

  • Valverde P, Healy E, Sikkink S et al. (1996) The Asp84Glu variant of the melanocortin 1 receptor (MC1R) is associated with melanoma. Hum Mol Genet 5:1663–1666

    PubMed  CAS  Google Scholar 

  • Van Haeringen A, Bergman W, Nelen MR et al. (1989) Exclusion of the dysplastic nevus syndrome (DNS) locus from the short arm of chromosome 1 by linkage studies in Dutch families. Genomics 5:61–64

    PubMed  Google Scholar 

  • Walker GJ, Nancarrow DJ, Walters MK, Palmer JM, Weber JL, Hayward NK (1994) Linkage analysis in familial melanoma kindreds to markers on chromosome 6p. Int J Cancer 59:771–775

    PubMed  CAS  Google Scholar 

  • Walker GJ, Hussussian CJ, Flores JF et al. (1995) Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 4:1845–1852

    PubMed  CAS  Google Scholar 

  • Walker GJ, Flores JF, Glendening JM, Lin AH, Markl ID, Fountain JW (1998) Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer 22:157–163

    PubMed  CAS  Google Scholar 

  • Wang Y, Becker D (1996) Differential expression of the cyclin-dependent kinase inhibitors p16 and p21 in the human melanocytic system. Oncogene 12:1069–1075

    PubMed  CAS  Google Scholar 

  • Weaver FJ, Gruis NA, Neuhausen S et al. (1994) Localization of a putative tumor suppressor gene by using homozygous deletions in melanomas. Proc Natl Acad Sci USA 91:7563–7567

    Google Scholar 

  • Wolfel T, Hauer M, Schneider J et al. (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    PubMed  CAS  Google Scholar 

  • Yang R, Gombart AF, Serrano M, Koeffler HP (1995) Mutational effects on the p16INK4a tumor suppressor protein. Cancer Res 55:2503–2506

    PubMed  CAS  Google Scholar 

  • Zuo L, Weger J, Yang Q et al. (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12:97–99

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garbe, C., Schittek, B. (2001). Familiäres Melanom. In: Ganten, D., Ruckpaul, K., Hahn, S.A., Schmiegel, W. (eds) Molekularmedizinische Grundlagen von hereditären Tumorerkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56889-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56889-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63219-8

  • Online ISBN: 978-3-642-56889-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics