Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 121 Accesses

Zusammenfassung

Familiäre Nierenkarzinome kommen selten vor. Als Rarität erschienen sie zunächst ohne weitere Bedeutung. Im Verlauf der 80er und der 90er Jahre hat die wissenschaftliche Erforschung der hereditären Nierentumoren jedoch Meilensteine gesetzt: Es gelangen die Kartierung und in jüngster Zeit die Identifizierung von pathogenetisch relevanten Genen. Dies hat zu einem völlig neuen Verständnis der Entstehung aller, d.h. auch der sporadischen Nierenkarzinome geführt. Nierenkarzinome lassen sich somit nicht nur morphologisch, sondern in zunehmendem Maß auch molekularbiologisch charakterisieren. Inwieweit Therapieoptionen und Prognose auch unter diesen neuen Aspekten überdacht werden müssen, lässt sich allerdings bislang nur für hereditäre Nierenkarzinome sagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Al-Saleem T, Wessner LL, Schelthauer BW et al. (1998) Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 83:2208–2216

    Article  PubMed  CAS  Google Scholar 

  • Amin MB, Crotty TB, Tickoo SK, Farrow GM (1997) Renal oncocytoma: a reappraisal of morphologic features with clinicopathologic findings in 80 cases. Am J Surg Pathol 21:1–12

    Article  PubMed  CAS  Google Scholar 

  • Anonymus (1996) Genetic testing for cancer susceptibility. J Clin Oncol 14:1730–1736

    Google Scholar 

  • Aoyama T, Fujikawa K, Yoshimura K, Sasaki M, Itoh T (1996) Bilateral renal cell carcinoma in a patient with tuberous sclerosis. Int J Urol 3:150–151

    Article  PubMed  CAS  Google Scholar 

  • Beckmann H, Su LK, Kadesch T (1990) TFE3: a helixloophelix protein that activates transcription through the immunoglobulin enhancer E3 motif. Gene Dev 4:167–179

    Article  PubMed  CAS  Google Scholar 

  • Bender BU, Weiterauer U, Schollmeyer P, Neumann HPH (1997) An incidental finding — bilateral multifocal renal oncocytoma. Nephrol Dial Transplant 12:1034–1036

    Article  PubMed  CAS  Google Scholar 

  • Bernues M, Casadevall C, Miro R et al. (1995) Cytogenetic characterization of a familial papillary renal cell carcinoma. Cytogenet Cell Genet 84:123–127

    Article  CAS  Google Scholar 

  • Bjornsson J, Short MP, Kwiatkowski DJ, Henske EP (1996) Tuberous sclerosis associated renal carcinoma. Clinical, pathological and genetic features. Am J Pathol 149:1201–1208

    PubMed  CAS  Google Scholar 

  • Bodmer, D, Eleveld MJ, Ligtenberg MJL. et al. (1998) An alternative route for multistep tumorigenesis in a novel case of hereditary renal cell cancer and a t(2;3) (q35;q21) chromosome translocation. Am J Hum Cenet 62:1475–1483

    Article  CAS  Google Scholar 

  • Brauch H, Weirich G, Hornauer MA, Störkel S, Wohl T, Bruening T (1999) Mutation spectrum in trie h loro ethylene exposed patients with renal cell carcinoma. J Natl Cancer Inst 91:854–861

    Article  PubMed  CAS  Google Scholar 

  • Brüning T, Weirich G, Hornauer MA, Höfler H, Brauch H (1997) Renal cell carcinomas in trichloroefhylene (TRI) exposed persons are associated with somatic mutations in the von Hippel-Lindau (VHL) tumor suppressor gene. Arch Toxicol 71:332–335

    Article  PubMed  Google Scholar 

  • Bugert P, Gaul C, Weber K et al. (1997) Specific genetic changes of diagnostic importance in chromophobe renal cell carcinomas. Lab Invest 76:203–208

    PubMed  CAS  Google Scholar 

  • Bundesärztekammer (1998) Richtlinien zur Diagnostik der genetischen Disposition für Krebserkrankungen. Dtsch Arztebl 95:A1396–1403

    Google Scholar 

  • Carbonara C, Longa L, Grosso E et al. (1994) 9q34 loss of heterozygosity in a tuberous sclerosis astrocytoma suggests a growth suppress or-like activity also for the TSC1 gene. Hum Mol Genet 3:1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Chauveau D, Duvic C, Chretien Y et al. (1996) Renal involvement of von Hippel-Lindau disease. Kidney Int 50:944–951

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Kishida T. Duh FM et al. (1995a) Suppression of growth of renal carcinoma cells by the von Hippel-Lindau tumor suppressor gene. Cancer Res 55:4804–4807

    PubMed  CAS  Google Scholar 

  • Chen F, Kishida T, Yao M et al. (1995b) Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat 5:66–75

    Article  PubMed  CAS  Google Scholar 

  • Choyke PL, Glenn GM, Wagner JP et al. (1997) Epididymal cystadenomas in von Hippel-Lindau disease. Urology 49:926–931

    Article  PubMed  CAS  Google Scholar 

  • Chudek J, Herbers J, Wilhelm M et al. (1998) The genetics of renal tumors in end-stage renal failure differs from those occurring in the general populalion. J Am Soc Nephrol 9:1045–1051

    PubMed  CAS  Google Scholar 

  • Clark J, Lu YJ, Sidhar SK et al. (1997) Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15:2233–2239

    Article  PubMed  CAS  Google Scholar 

  • Cohen AJ, Li FP, Berg S et al. (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301:592–595

    Article  PubMed  CAS  Google Scholar 

  • Contractor H, Zariwala M, Bugert P, Zeisler J, Kovacs G (1997) Mutation of the p53 tumour suppressor gene occurs preferentially in the chromophobe type of renal cell tumour. J Pathol 181:136–139

    Article  PubMed  CAS  Google Scholar 

  • Cooper CS (1992) The met oncogene: from detection by transfeciion to transmembrane receplor for hepatocyte growth factor. Oncogene 7:3–7

    PubMed  CAS  Google Scholar 

  • Cooper CS, Park M, Blair DG et al. (1984) Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311:29–33

    Article  PubMed  CAS  Google Scholar 

  • Corless CL, Aburatani H, Fletcher JA, Housman DE, Amin MB, Weinberg DS (1996) Papillary renal carcinoma. Quantitation of chromosomes 7 and 17 by FISH analysis and of chromosome 3p for LOH and DNA ploidy. Diagn Mod Pathol 5:53–64

    Article  CAS  Google Scholar 

  • Crossey PA, Richards FM, Foster K et al. (1994) Identification of intragenic mutations in the von Hippel-Lindau disease tumor suppressor gene and correlation with disease phenotype. Hum Mol Genet 3:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Crotty TB, Lawrence KM. Moertel CA et al. (1992) Cytogenetic analysis of six renal oncocytomas and a chromophobe cell renal carcinoma. Evidence that-Y,-1 may be a characteristic anomaly in renal oncoevtomas. Cancer Genet Cytogenet 61:61–66

    Article  PubMed  CAS  Google Scholar 

  • Crotty TB, Farros GM, Lieber MM (1995) Chromophobe cell renal carcinoma: clini cop athologic features of 50 cases. J Urol 154:964–967

    Article  PubMed  CAS  Google Scholar 

  • Davis CJ, Mostofi FK, Sesterhenn IA (1995) Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol 19:1–11

    Article  PubMed  Google Scholar 

  • Decker H, Gemili R, Neumann HPH, Walter T, Sandberg (1988) A loss of heterocygosity on 3p in an Von Hippel-Lindau renal cell carcinoma. Cancer Genet Cytogenet 39:289–293

    Article  Google Scholar 

  • Delahunt B, Eble J (1997) Papillary renal cell carcinoma: a histological and immunohistochemical study of 105 tumors. Mod Pathol 10:537–544

    PubMed  CAS  Google Scholar 

  • Duan DR, Pause A, Burgess WH et al. (1995) Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269:1402–1406

    Article  PubMed  CAS  Google Scholar 

  • Duh FM, Scherer SW, Tsui LC, Lerman M, Zbar B, Schmidt L (1997) Gene structure of the humen MET protooncogene. Oncogene 15:1583–1586

    Article  PubMed  CAS  Google Scholar 

  • Eng C (1996) The RET proto-oncogene in multiple endocrine neoplasia type 2 and Hirschsprung’s disease. N Engl J Med 335:943–951

    Article  PubMed  CAS  Google Scholar 

  • Eng C, Smith DP, Mulligan LM et al. (1994) Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 3:237–241

    Article  PubMed  CAS  Google Scholar 

  • Ermis A, Henn W, Remberger K, Hopf C, Hopt T, Zang KD (1995) Proliferation enhancement by spontaneous multiplication of chromosome 7 in rheumatic synovial cells in vitro. Hum Genet 96:651–654

    Article  PubMed  CAS  Google Scholar 

  • European Chromosome 16 Tuberous Sclerosis Consortium (1993) Identification and chracterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315

    Article  Google Scholar 

  • Fairchild TN, Dail D, Brannen FE (1983) Renal oncocytoma — bilateral, multifocal. Urology 22:355–359

    Article  PubMed  CAS  Google Scholar 

  • Foster K, Prowse A, Berg A van den et al. (1994) Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 3:2169–2173

    Article  PubMed  CAS  Google Scholar 

  • Garrett KP, Aso T, Bradsher JN et al. (1995) Positive regulation of general transcription factor SHI by tailed ubiquitin homolog. Proc Natl Acad Sci USA 92:7172–7176

    Article  PubMed  CAS  Google Scholar 

  • Gemmili RM, West JD, Boldog F et al. (1998) The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc Natl Acad Sci USA 95:9572–9577

    Article  Google Scholar 

  • Gläsker S, Bender BU, Apel TW et al. (1999) The impact of molecular genetic analysis of the VHL-gene in patients with haemangioblastomas of the central nervous system. J Neurol Neurosurg Psychiatry 67:758–762

    Article  PubMed  Google Scholar 

  • Glavac D, Neumann HPH, Wittke C et al. (1996) Mutations in the VHL tumor suppressor gene and associated lesions in families with Von Hippel-Lindau disease from central Europe. Hum Genet 98:271–280

    Article  PubMed  CAS  Google Scholar 

  • Glenn GM, Daniel LN, Choyke P et al. (1991) Von Hippel-Lindau (VHL) disease: distinct phenolypes suggest more than one mutant allele at the VHL locus. Hum Genet 87:207–210

    Article  PubMed  CAS  Google Scholar 

  • Glenn GM, Stolle C, Sgambati M et al. (1999) New mutations versus silent carrier-parent as source of first generation diagnoses in a hereditary neoplastic disorder: von Hippel-Lindau disease. Proc Am Assoc Cancer Res 40:464

    Google Scholar 

  • Glukhova L, Goguel AF, Chudoba I et al. (1998) Overrepresentation of 7q31 and 17q in renal cell carcinomas. Genes Chromosomes Cancer 22:171–178

    Article  PubMed  CAS  Google Scholar 

  • Gnarra JR, Tory K, Weng Y et al. (1994) Mutations of the VHL tumor suppressor gene in renal carcinoma. Nat Genet 7:85–90

    Article  PubMed  CAS  Google Scholar 

  • Green AJ, Johnson PH, Yates JRW (1994a) The tuberous sclerosis gene on chromosome 9q34 acts as a growth suppressor. Hum Mol Genet 3:1833–1834

    Article  PubMed  CAS  Google Scholar 

  • Green AJ, Smith M, Yates JRW (1994b) Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nat Genet 6:193–196

    Article  PubMed  CAS  Google Scholar 

  • Gronwald J, Baur AS, Holtgreve-Grez H et al. (1999) Chromosomal abnormalities in renal cell neoplasms associated with acquired renalcystic disease. A series studied by comparative genomic hybridization and fluorescence in situ hybridization. J Pathol 187:308–312

    Article  PubMed  CAS  Google Scholar 

  • Gunawan B, Bergmann F, Braun S et al. (1999) Polyploidization and loss of chromosomes 1, 2, 6, 10, 13, and 17 in three cases of chromophobe renal cell carcinomas. Cancer Genet Cytogenet 57:5009–5012

    Google Scholar 

  • Hara M, Yostlida K, Tomita M, Akimoto M, Kawai H, Fukuda Y (1982) A case of bilateral renal oncocytoma. J Urol 128:576–578

    PubMed  CAS  Google Scholar 

  • Henske EP, Neumann HPH, Scheithauer BW et al. (1995) Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer 13:295–298

    Article  PubMed  CAS  Google Scholar 

  • Herman JG, Latif F, Weng Y et al. (1994) Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704

    Article  PubMed  CAS  Google Scholar 

  • Hofstra RMW, Landsvater RM, Ceccerini I et al. (1994) A mutation in the RET pro to-oncogen e associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367:375–376

    Article  PubMed  CAS  Google Scholar 

  • Hosoe S, Brauch H, Latif F et al. (1990) Localization of the von Hippel-Lindau gene to a small region of chromosome 3. Genomics 8:634–640

    Article  PubMed  CAS  Google Scholar 

  • Hughson MD, Schmidt L, Zbar B et al. (1996) Renal cell carcinoma of end-stage renal disease: a histopathologic and molecular genetic study. J Am Soc Nephrol 7:2461–2468

    PubMed  CAS  Google Scholar 

  • Hughson MD, Bigler S, Dickmann K, Kovacs G (1999) Renal cell carcinoma of end-stage renal disease: an analysis of chromosome 3, 7 and 17 abnormalities by microsatellite amplification. Mod Pathol 12:301–309

    PubMed  CAS  Google Scholar 

  • Uiopoulos O, Kibel A, Gray S, Kaefin WG (1995) Tumor suppression bv the human von Hippel-Lindau gene product. Nat Med L822–826

    Google Scholar 

  • Uiopoulos O, Olili M, Kaelin WG (1998) pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci USA 95: 11.661–11.666

    Google Scholar 

  • Ishikawa I, Kovacs G (1993) High incidence of papillary renal cell tumors in patients on chronic hemodialysis. Hislopathology 22:135–139

    Article  CAS  Google Scholar 

  • Israeli RS, Wise GJ, Bansal S, Gerard PS, Castela A (1995) Bilateral renal oncocytomatosis in a patient with renal failure. Urology 46:873–875

    Article  PubMed  CAS  Google Scholar 

  • Iwai K, Yamanaka K, Kamura T et al. (1999) Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 96:12.436–12.441

    Article  Google Scholar 

  • Janetschek G, Finkenstedt G, Casser R et al. (1998) Laparoscopic surgery for pheochromocytoma: adrenalectomy, partial resection, excision of paragangliomas. J Urol 160:330–334

    Article  PubMed  CAS  Google Scholar 

  • Jeffers M, Schmidt L, Nakaigawa N et al. (1997) Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci USA 94:11.445–11.450

    Article  Google Scholar 

  • Jiang F, Richter J, Schraml P et al. (1998) Chromosomal imbalances in papillary renal cell carcinoma: genetic differences betweeen histological subtypes. Am J Pathol. 93:9154–9159

    Google Scholar 

  • Kadewsky KT, Fulgham PF (1993) Bilateral multifocal renal oncocytoma: case report and review of the literature. J Urol 150:1227–1228

    Google Scholar 

  • Kaelin WG, Iliopoulos O, Lonergan KM, Ohh M (1998) Functions of the von Hippel-Lindau tumor suppressor protein. J Intern Med 243:535–539

    Article  PubMed  CAS  Google Scholar 

  • Kamura T, Koepp DM, Conrad MN et al. (1999) Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–661

    Article  PubMed  CAS  Google Scholar 

  • Kardas I, Denis A, Babinska M et al. (1998) Translocation (X;1) (p11.2;q21) in a papillary renal cell carcinoma in a 14-year-old-girl. Cancer Genet Cytogenet 101:1959–1961

    Google Scholar 

  • Katagiri F, Seipel K, Chua NH (1992) Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol Cell Biol 12:4809–4816

    PubMed  CAS  Google Scholar 

  • Kattar MM, Grignon DJ, Wallis T et al. (1997) Clinicopathologic and interphase cytogenetic analysis of papillary (chromophilic)renal cell carcinoma. Mod Pathol 10:1143–1150

    PubMed  CAS  Google Scholar 

  • Keeler LL, Klauber GT (1992) Von Hippel-Lindau disease and renal cell carcinoma in a 16-year-old boy. J Urol 147:1588–1591

    PubMed  Google Scholar 

  • Kempermann G, Neumann HPH, Scheremet R et al. (1996) Deafness due to bilateral endolymphatic sac tumor in a case of Von Hippel-Lindau syndrome: J Neurol Neurosurg Psychiatry 61:318–320

    Article  PubMed  CAS  Google Scholar 

  • Kenck C, Wilhelm M, Bugert P, Staehler G, Kovacs G (1996) Mutation of the VHL-gene is associated exclusively with the development of non-papillary renal cell carcinomas. J Pathol 179:157–161

    Article  PubMed  CAS  Google Scholar 

  • Kessler PM, Vasavada SP, Rackley RR et al. (1995) Expression of the von Hippel-Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis. Mol Med 1:457–466

    PubMed  CAS  Google Scholar 

  • Kibel A, Uiopoulos O, DeCarpio JA, Kaelin WG (1995) Binding of the von Hippel-Lindau tumor suppressor protein to elongin B and C. Science 269:1444–1446

    Article  PubMed  CAS  Google Scholar 

  • King CR, Schimke RN, Arthur T, Davoren B, Collins D (1987) Proximal 3p deletion in renal cell carcinoma cells from a patient with von Hippel-Lindau disease. Cancer Genet Cytogenet 27:345–348

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lesson from hereditary colorectal cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  • Kitayama H, Kanakura Y, Furitsu T et al. (1995) Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor independent growth and tumorigenicity of factor-de pendent hematnpoetic cell lines. Blood 85:790–798

    PubMed  CAS  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    Article  PubMed  Google Scholar 

  • Koepp DM, Harper JW, Elledge SJ (1999) How cyclin became a cyclin: regulated proteolysis in cell cycle Cell 97:431–434

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Kobayashi K, Kishida T et al. (1997) FHIT gene is not mutated in sporadic renal cell carcinoma. Proc Am Assoc Cancer Res 38:275

    Google Scholar 

  • Kovacs G (1989) Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am J Pathol 134:27–34

    PubMed  CAS  Google Scholar 

  • Kovacs G, Hoene E (1988) Loss of der(3) in renal carcinoma cell of a patients with constitutional t(3;12). Hum Genet 78:148–150

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Kovacs A (1993) Parenchymal abnormalities associated with papillary renal cell tumors: a morphologic study. J Urol Pathol 1:301–312

    Google Scholar 

  • Kovacs G, Kung HF (1991) Nonhomologous chromatid exchange in hereditary and sporadic renal cell carcinomas. Proc Natl Acad Sci USA 88:194–198

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Erlandsson R, Boldog F et al. (1988) Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85:1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Brusa P, De Riese W (1989a) Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int J Cancer 43:422–427

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Welter C, Wilkens L, Blin N, De Riese W (1989b) Renal oncocytoma: a phenotypic and genotypic entity of renal parenchymal tumors. Am J Pathol 134:967–971

    PubMed  CAS  Google Scholar 

  • Kovacs G, Emanuel A, Neumann HP, Kung HF (1991) Cytogenetics of renal cell carcinoma associated with von Hippel-Lindau disease. Genes Chromosome Cancer 3:256–262

    Article  CAS  Google Scholar 

  • Kovacs A, Störkel S, Thoenes W, Kovacs G (1992) Mitochrondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. J Pathol 167:273–277

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Akhtar M, Beckwith JB et al. (1997) Heidelberg classification of renal parenchymal tumors. J Pathol 183:131–133

    Article  PubMed  CAS  Google Scholar 

  • Kshirsagar AV, Choyke PL, Linehan WM, Walther MM (1998) Pseudotumors after renal parenchymal sparing surgery. J Urol 159:1148–1151

    Article  PubMed  CAS  Google Scholar 

  • Lamiell JM, Salazar RG, Hsia YE (1989) Von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine (Baltimore) 68:1–29

    CAS  Google Scholar 

  • Latif F, Tory T, Gnarra J et al. (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Neumann M, Stearman R et al. (1999) Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol Cell Biol 19:1486–1497

    PubMed  CAS  Google Scholar 

  • Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W (1999) The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Gene Dev 13:1822–1833

    Article  PubMed  CAS  Google Scholar 

  • Lonergan KM, Uiopoulos O, Ohh M et al. (1998) Regulation of hypoxia-in du cible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18:732–741

    PubMed  CAS  Google Scholar 

  • Lubensky IA, Gnarra JR, Bertheau P, Walther MM, Linehan WM, Zhuang Z (1996) Allelic deletions of the VHL-gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. Am J Pathol 149:2089–2094

    PubMed  CAS  Google Scholar 

  • Lynch HT, Ens JA, Lynch JF (1990) The Lynch syndrome II and urological malignancies. J Urol 143:24–28

    PubMed  CAS  Google Scholar 

  • Lynch HT, Smyrk T, Lynch J (1997) An update of HNPCC (Lynch syndrome). Cancer Genet Cytogenet 93:84–99

    Article  PubMed  CAS  Google Scholar 

  • Maddock IR, Moran A, Maher et al. (1996) A genetic register for von Hippel-Lindau disease. J Med Genet 33:120–127

    Article  PubMed  CAS  Google Scholar 

  • Maher ER (1990) Clinical features and natural history of von Hippel-Lindau disease. QJM 77:1151–1163

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Kaelin WG (1997) Von Hippel-Lindau disease. Medicine (Baltimore) 76:381–391

    Article  CAS  Google Scholar 

  • Maher ER, Bentley E, Yates JRW et al. (1991a) Mapping of the von Hippel-Lindau disease locus to a small region of chromosome 3p by linkage analysis. Genomics 10:957–960

    Article  PubMed  CAS  Google Scholar 

  • Mäher ER, Iselius L, Yates JR et al. (1991b) Von Hippel-Lindau disease: a genetic study. J Med Genet 28:443–447

    Article  PubMed  Google Scholar 

  • Mandlla-Jimenez R, Stanley RJ, Blath RA (1976) Papillary renal cell carcinoma: a clinical, radiologic, and pathologic study of 34 cases. Cancer 38:2469–2480

    Article  Google Scholar 

  • Manski TJ, Heffner DK, Glenn DM et al. (1997) Endolymphatic sac tumors: a source of morbid hearing loss in von Hippel-Lindau disease. J Am Med Assoc 277:1461–1466

    Article  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW et al. (1999) The tumor suppressor protein VHL targets hypoxia-inducible factorsforoxygen-dependentproteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  • Mead GO, Thomas LR Jr, Jackson JG (1990) Renal oncocytoma: report of a case with bilateral multifocal oncocytomas. Clin Imaging 14:231–233

    Article  PubMed  CAS  Google Scholar 

  • Melmon KL, Rosen SW (1964) Lindau’s disease: review of the literature and study of a large kindred. Am J Med 36:595–617

    Article  PubMed  CAS  Google Scholar 

  • Meloni AM, Dobbs RM, Pontes JE, Sandberg AA (1993) Translocation (X;1) in papillary renal adenocarcinoma. A new cytogenetic subtype. Cancer Genet Cytogenet 65:1–6

    Article  PubMed  CAS  Google Scholar 

  • Mostofi FK, Davis CJ (1998) Histological typing of kidney tumours, 2nd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Nagata H, Worobec AS, Oh CK et al. (1995) Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Nail Acad Sci USA 92:10.560–10.564

    Google Scholar 

  • Neumann HPH (1987a) Basic criteria for clinical diagnosis and genetic counseling in Von Hippel-Lindau syndrome. J Vase Dis 16:220–226

    CAS  Google Scholar 

  • Neumann HPH (1987 b) Prognosis of Von Hippel-Lindau syndrome. J Vase Dis 16:309–311

    CAS  Google Scholar 

  • Neumann HPH (1998) Von Hippel-Lindau Krankheit. Eigenverlag

    Google Scholar 

  • Neumann HPH, Bender BU (1998) Genotype-phenotype correlations in Von Hippel-Lindau disease. J Intern Med 43:541–545

    Google Scholar 

  • Neumann HPH, Kandt RS (1998) Klinik und Genetik der Tuberösen Sklerose. Dtsch Med Wochenschr 118:1577–1583

    Article  Google Scholar 

  • Neumann HPH, Wiestier OD (1991) Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet 337:1052–1054

    Article  PubMed  CAS  Google Scholar 

  • Neumann HPH, Zbar B (1997) Renal cysts, renal cancer and Von Hippel-Lindau disease. Kidney Int 51:16–26

    Article  PubMed  CAS  Google Scholar 

  • Neumann HPH, Berger DP, Blum U et al. (1993) Pheochromocytomas, multiple endocrine neoplasia lype 2, and Von Hippel-Lindau syndrome. N Engl J Med 329:1351–1358

    Article  Google Scholar 

  • Neumann HPH, Bender BU, Berger DP et al. (1998) Prevalence, morphology and biology of renal cell carcinoma in von Hippel-Lindau disease compared to sporadic renal cell carcinoma. J Urol 160:1248–1254

    Article  PubMed  CAS  Google Scholar 

  • Neumann HPH, Bender BU, Reincke M, Eggstein S, Laubenberger J, Kirste G (1999 a) Adrenal sparing surgery for phaeochromocytoma. Br J Surg 84:94–97

    Article  Google Scholar 

  • Neumann HPH, Reincke M, Bender BU, Eisner R, Janetschek G (1999b) Preserved adrenocortical function after laparoscopic bilateral adrenal sparing surgery for hereditary pheochromocytoma. J Clin Endocrinol Metab 84:2608–2610

    Article  PubMed  CAS  Google Scholar 

  • Ohh M, Kaelin W (1999) The Von Hippel Lindau tumor suppressor protein. New perspectives. Mol Med Today 5:257–263

    Article  PubMed  CAS  Google Scholar 

  • Ohh M, Yauch RL, Lonergan et al. (1998) The von Hippel-Lindau tumor suppressor protein is required for propper assembly of an extracellular fibronectin matrix. Mol Cells 1:959–968

    Article  CAS  Google Scholar 

  • Ohta M, Inoue H, Cotticelli MG et al. (1996) The FHIT gene, spanning the chromosome 3p 13.2 fragile site and renal carcinoma-associated t(3;8) breakpoint is abnormal in digestive tract cancers. Cell 84:587–597

    Article  PubMed  CAS  Google Scholar 

  • Olivero M, Rizzo M, Madeddu R et al. (1996) Overexpression and activation of hepatocyte growth factor/scatter factor in human non-s mall-cell lung carcinoms. Br J Cancer 74:1862–1868

    Article  PubMed  CAS  Google Scholar 

  • Palmedo G, Fischer J, Kovacs G (1999) Duplications of DNA sequences between loci D20S478 and D20S206 at 20q11.2 and between loci D20S902 and D20S480 at 20q13.2 mark new tumor genes in papillary renal cell carcinoma. Lab Invest 79:311–316

    PubMed  CAS  Google Scholar 

  • Park M, Dean M, Cooper CS et al. (1986) Mechanism of met oncogene activation. Cell 45:895–904

    Article  PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Tyers M (1998) Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F box hypothesis. Trends Genet 14:263–243

    Article  Google Scholar 

  • Pause A, Lee S, Worrell RA et al. (1997) The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Nat Acad Sci USA 94:2156–2161

    Article  PubMed  CAS  Google Scholar 

  • Perot C, Bougaran J, Boccon-Gibod L et al. (1999) Two new cases of papillary renal cell carcinoma with t(X;1) (p11;q21) in females. Cancer Genet Cytogenet 110:54–56

    Article  PubMed  CAS  Google Scholar 

  • Piao X, Bernstein A (1996) A point mutation in the catalytic domain of c-kit induces growth factor independence, tumorigenicity and differentiation of mast cells. Blood 87:3117–3123

    PubMed  CAS  Google Scholar 

  • Piao X, Paulson R, Geer P van der, Pawson T, Bernstein A (1996) Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degredation of the protein tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA 93:14.665–14.669

    Article  Google Scholar 

  • Ponder BAH, Smith D (1996) The MEN II syndromes and the role of the ret proto-oncogene. Adv Cancer Res 70:179–222

    Article  PubMed  CAS  Google Scholar 

  • Poston CD, Jaffe GS, Lubensky IA et al. (1995) Characterization of the renal pathology of a familial form of renal cell carcinoma associated with von Hippel-Lindau disease: clinical and molecular genetic implications. J Urol 153:22–26

    Article  PubMed  CAS  Google Scholar 

  • Prowse, AH, Webster AR, Richards FM et al. (1997) Somatic inactivation of the VHL-gene in von Hippel-Lindau disease tumors. Am J Hum Genet 60:765–771

    PubMed  CAS  Google Scholar 

  • Richards FM, Schofield PN, Fleming S, Mäher ER (1996) Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet 5:639–644

    Article  PubMed  CAS  Google Scholar 

  • Robertson FM, Cendron M, Klauber GT, Harris BH (1996) Renal cell carcinoma in association with tuberous sclerosis in children. J Pediatr Surg 31:729–730

    Article  PubMed  CAS  Google Scholar 

  • Rongioletti F, Hazini R, Gianotti G, Rebora A (1989) Fibrofolliculomas, tricodiscomasand acrochordons (Birt-Hogg-Dube) associated with intestinal polyposis. Clin Exp Dermatol 14:72–74

    Article  PubMed  CAS  Google Scholar 

  • Roth JS, Rabinowitz AD, Benson M, Grossman ME (1993) Bilateral renal cell carcinoma in the Birt-Hogg-Dube syndrome. J Am Acad Dermatol 29:1055–1056

    Article  PubMed  CAS  Google Scholar 

  • Rubin JS, Bottaro DP, Aaronson SA (1993) Hepatocyte growth factor/scatter factor and its receptor, the c-mel proto-oncogen e product. Biochem Biophys Acta 1155:357–371

    PubMed  CAS  Google Scholar 

  • Sampson JR, Patel A, Mee AD (1995) Multifocal renal cell carcinoma in sibs from a chromosome 9 linked (TSC1) tuberous sclerosis family. J Med Genet 32:848–850

    Article  PubMed  CAS  Google Scholar 

  • Santoro M, Carlomagno F, Romano A et al. (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267:381–383

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Natt E, Neumann HPH (2000) Long-term results of laser treatment for retinal angiomatosis in von Hippel-Lindau disease. Eur J Med Res 5:47–58

    PubMed  CAS  Google Scholar 

  • Schmidt L, Duh FM, Chen F et al. (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68–73

    Article  PubMed  CAS  Google Scholar 

  • Schmidt L, Junker K, Weirich G et al. (1998) Two North American families wilh hereditary papillary renal carcinoma and identical novel mutations in the MET protooncogene. Cancer Res 58:1719–1722

    PubMed  CAS  Google Scholar 

  • Schmidt L, Junker K, Nakaigawa N et al. (1999) Novel mutations of the MET-protooncogene in papillary renal carcinoma. Oncogene 18:2343–2350

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld A, Davidowitz EJ, Burk RD (1998) A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci USA 95:8817–8822

    Article  PubMed  CAS  Google Scholar 

  • Seipel K, Georgiev O, Schaffher W (1992) Different activation domains stimulate transcription from remote (“enhancer”). EMBO J 11:4961–4968

    PubMed  CAS  Google Scholar 

  • Seizinger BR, Rouleau GA, Ozelius U et al. (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269

    Article  PubMed  CAS  Google Scholar 

  • Sgambati MT, Stolle C, Choyke PL et al. (2000) Mosaicism in von Hippel-Lindau disease: lessons from kindreds with germline mutations identified in offsprings with mosaic parents. Am J Hum Genet 66:84–91

    Article  PubMed  CAS  Google Scholar 

  • Shipley JM, Birdsall S, Clark J et al. (1995) Mapping the X chromosome breakpoint in two papillary renal carcinoma cell lines with a t(X;1) (p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284

    Article  PubMed  CAS  Google Scholar 

  • Shuin T, Kondo K, Torigoe S et al. (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54:2852–2855

    PubMed  CAS  Google Scholar 

  • Shuin T, Kondo K, Sakai N et al. (1996) A case of chromophobe renal cell carcinomas associated with low chromosome number and microsatellite instability. Cancer Genet Cytogenet 86:69–71

    Article  PubMed  CAS  Google Scholar 

  • Sidhar SK, Clark J, Gill S et al. (1996) The t(X);1)-(p11.2;q21:2) translocation in papillary renal cell carcino-ma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet 5:1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Siemeister G, Weindel K, Möhrs K et al. (1996) Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res 56:2299–2301

    PubMed  CAS  Google Scholar 

  • Skinnider BF, Jones EC (1999) Renal oncocytoma and chromophobe renal cell carcinoma. A comparison of colloidal iron staining and electron microscopy. Am J Clin Pathol 111:796–803

    PubMed  CAS  Google Scholar 

  • Stebbins CE, Kaelin WG, Pavletich NP (1999) Structure of the VHL-elongin C-elongin B complex: implications for tumor suppressor function. Science 284:455–461

    Article  PubMed  CAS  Google Scholar 

  • Stolle C, Glenn G, Zbar B et al. (1998) Improved detection of germline mutations in Von Hippel Lindau disease’s tumor suppressor gene. Hum Mutat 12:417–423

    Article  PubMed  CAS  Google Scholar 

  • Storkel S, Berg A van den (1995) Morphological classification of renal cancer. World I Urol 13:153–158

    CAS  Google Scholar 

  • Szabo J, Heath B, Hill VM et al. (1995) Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome Iq21-q31. Am J Hum Genet 56:944–950

    PubMed  CAS  Google Scholar 

  • Teh BT, Giraud S, Sari NF et al. (1997) Familial von-VHL, non-papil!ary clear cell RCC — a new entity. Lancet 349:848–849

    Article  PubMed  CAS  Google Scholar 

  • Teh BT, Nord B, Kytola S et al. (1998a) Familial non-VHL, non-papillary renal cell carcinoma. 3rd International Symposium on von Hippel-Lindau disease, Paris, France

    Google Scholar 

  • Teh BT, Blennow E, Giraud et al. (1998b) Bilateral multiple renal oncocytomas and cysts associated with a constitutional translocation (8;9)(q24.1;q34.3) and a rare constitutional VHL missense substitution. Genes Chromosome Cancer 21:260–264

    Article  Google Scholar 

  • Teh BT, Farnebo F, Kristoffersson U et al. (2000) Autosomal dominant primary hyperparathyroidism and jaw tumor syndrome associated with adult nephroblastomas and cystic kidney disease: linkage to 1q21-q32 and loss of the wild type allele in nephroblastomas. J Clin Endocrinol Metab in press

    Google Scholar 

  • Thoenes W, Storkel S, Rumpelt HJ (1986) Histopathology and classification of renal tumors (adenomas, oncocytomas, and carcinomas). The basic cytological and histopathological elements and their use in diagnostics. Pathol Res Pract 181:125–143

    Article  PubMed  CAS  Google Scholar 

  • Thoenes W, Storkel St, Rumpelt HJ, Moll R (1990) Cytomorphological typing of renal cell carcinoma — a new approach. Eur Urol [Suppl 2] 18:6–9

    Google Scholar 

  • Tickoo SK, Amin MB (1998) Discriminant nuclear features of renal oncocytoma and chromophobe renal cell carcinoma. Analysis of their potential utility in the differential diagnosis. Am J Clin Pathol 110:782–787

    Google Scholar 

  • Toro J, Duray P, Glenn G et al. (1999) Birt-Hogg-Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Tory K, Brauch H, Linehan M et al. (1989) Specific genetic change in tumors associated with von Hippel-Lindau disease. J Natl Cancer Inst 81:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Trash-Bingham CA, Salazar H, Greenberg RA, Tartof KD (1996) Loss of heterozygosity studies indicate that chromosome 1p harbors a tumor suppressor gene for renal oncocytomas. Genes Chromosome Cancer 16:64–67

    Article  Google Scholar 

  • Tsujimura T (1996) Role of c-kit receptor tyrosine kinase in the development, survival and neoplastic transformation of mast cells. Pathol Int 46:933–936

    Article  PubMed  CAS  Google Scholar 

  • Tyers M, Rottapel R (1999) VHL: a very hip ligase. Proc Natl Acad Sci USA 96:12.230–12.232

    Article  Google Scholar 

  • Ubogy-Rainey Z, James WD, Lupton GP, Rodman OG (1987) Fibrofolliculomas, trichodiscomas, and acrochordons: the Birt-Hogg-Dube syndrome. J Am Acad Dermatol 16:452–457

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg A, Dijkhuizen T, Störkel KS et al. (1995) Chromosomal changes in renal oncocytomas. Evidence that t(5;11) (q35;q13) may characterize a second subgroup of oncocytomas. Cancer Genet Cytogenet 79:165–168

    Google Scholar 

  • Van Slegtenhorst M, De Hoogt R, Hermans C et al. (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:803–808

    Article  Google Scholar 

  • Versteeg R (1997) Aberrant methylation in cancer. Am J Hum Genet 60:751–754

    PubMed  CAS  Google Scholar 

  • Walther MM, Choyke PL, Glenn G et al. (1999) Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol 161:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Warfel KA, Eble JN (1982) Renal oncocytomatosis. J Urol 127:1179–1180

    PubMed  CAS  Google Scholar 

  • Weirich G, Glenn G, Junker K et al. (1994) Familial renal oncocytoma: clinicopathological study of 5 families. J Urol 160:335–340

    Article  Google Scholar 

  • Weterman MAJ, Wilbrink M, Dijkhuizen T, Van den Berg E, Van Kessel AG (1996a) Fine mapping of the 1q21 break-point of the papillary renal cell carcinoma-assodates (X;1) translocation. Hum Genet 98:16–21

    Article  PubMed  CAS  Google Scholar 

  • Weterman MAJ, Wilbrink M, Geurts van Kessel A (1996b) Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1) (p11;q21)-positive papillary renal cell carcinomas. Proc Natl Acad Sci USA 93:15.294–15.298

    Article  Google Scholar 

  • Whaley JM, Naglich J, Gelbert L et al. (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Am I Hum Genet 55:1092–1102

    CAS  Google Scholar 

  • Wiatrowska BA, Zakowski MF (1999) Fine-needle aspiration biopsy of chromophobe renal cell carcinoma and oncocytoma: comparison of cytomorphologic features. Cancer 87:161–167

    Article  PubMed  CAS  Google Scholar 

  • Wienecke R, Maize JC, Shoarinejad F et al. (1996) Co-localization of the TSC2 product tuberin with its target Rapi in the Golgi apparatus. Oncogene 13:913–923

    PubMed  CAS  Google Scholar 

  • Wienecke R, Maize JC, Reed JA, De Gunzburg J, Yeung RS, DeClue JE (1997) Expression of the TSC2 product tuberin and its target Rapi in normal human tissues. Am J Pathol 150:43–50

    PubMed  CAS  Google Scholar 

  • Xiao GH, Shoarinejad F, Jin F et al. (1997) The tuberous sclerosis-2 gene product, tuberin functions as a Rab5GAP in modulating endocytosis. J Biol Chem 272:6097–6100

    Article  PubMed  CAS  Google Scholar 

  • Yao M, Latif F, Orcutt ML et al. (1993) Von Hippel-Lindau disease: identification of deletion mutations by pulsed field gel electrophoresis. Hum Genet 92:605–614

    Article  PubMed  CAS  Google Scholar 

  • Zbar B, Lerman M (1998) Inherited carcinomas of the kidney. Adv Cancer Res 75:163–201

    Article  PubMed  CAS  Google Scholar 

  • Zbar B, Brauch H, Talmadge C, Linehan WM (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327:721–724

    Article  PubMed  CAS  Google Scholar 

  • Zbar B, Tory K, Merino M et al. (1994) Hereditary papillary renal carcinoma. J Urol 151:561–566

    PubMed  CAS  Google Scholar 

  • Zbar B, Glenn G, Lubensky I et al. (1995) Hereditary papillary renal cell carcinoma: clinical studies in 10 families. J Urol 153:907–912

    Article  PubMed  CAS  Google Scholar 

  • Zbar B, Kishida T, Chen F et al. (1996) Germline mutations in the von Hippel-Lindau disease (VHL) gene in families from North American, Europe and Japan. Hum Mutat 8:348–357

    Article  PubMed  CAS  Google Scholar 

  • Zhao WP, Gnarra JR, Liu S, Knutsen T, Linehan WM, Whang-Peng J (1995) Renal cell carcinoma. Cytogenetic analysis of tumors and cell lines. Cancer Genet Cytogenet 82:128–139

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Z, Park WS, Pack S et al. (1998) Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 20:66–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neumann, H.P.H., Gimm, O., Krek, W., Teh, B.T., Zbar, B. (2001). Familiäres Nierenkarzinom. In: Ganten, D., Ruckpaul, K., Hahn, S.A., Schmiegel, W. (eds) Molekularmedizinische Grundlagen von hereditären Tumorerkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56889-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56889-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63219-8

  • Online ISBN: 978-3-642-56889-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics