Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 137 Accesses

Zusammenfassung

Jede der etwa 100 verschiedenen Formen von Krebs (maligne Tumoren) ist das Ergebnis von grundlegenden, zelluläre Funktionen betreffenden Veränderungen von genetischen Informationen in den Tumorzellen. In diesem Sinn ist Krebs genetisch bedingt. Jedoch sind die meisten Formen von Krebs nicht erblich, von wichtigen Ausnahmen abgesehen. Das Spektrum der an der Krebsentstehung beteiligten Gene und die Mechanismen ihrer Störung sind breit. Dies resultiert aus der Vielfältigkeit von Genen und Gensystemen, welche die Zellteilung und Differenzierung in verschiedenen Geweben kontrollieren. Angesichts aller Unterschiede in der Diagnostik und der Behandlung der verschiedenen Formen von Krebs eignen sich die genetischenAspekte der Krebsentstehungals Grundlage für das Verständnis. Diese Einführung zum „Handbuch der molekularen Medizin“, Band 9 und 10 über Tumorerkrankungen, soll die Orientierung erleichtern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Antonelli NM et al. (1996) Cancer in pregnancy: a review of the literature. Parts I and II. Obstet Gynecol Surv 51:125–142

    Article  PubMed  CAS  Google Scholar 

  • Barrett MT et al. (1999) Evolution of neoplastic cell lineages in Barrett oesophagus cancer. Nat Genet 22:106–109

    Article  PubMed  CAS  Google Scholar 

  • Bartram CR et al. (1983) Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306:277–280

    Article  PubMed  CAS  Google Scholar 

  • Bell DW et al. (1999) Heterozygous germline hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2828–2831

    Article  Google Scholar 

  • Boland CR (1998) Hereditary nonpolyposis colorectal cancer: In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 333–346

    Google Scholar 

  • Catlin E A et al. (1999) Transplacental transmission of natural-killer-cell lymphoma. N Engl J Med 341:85–91

    Article  PubMed  CAS  Google Scholar 

  • Collins FS, Trent JM (1998) Cancer genetics. In: Fauci AS, Braunwald E, Isselbacher KJ et al. (eds) Harrison’s principies of internal medicine, 14th edn. McGraw-Hill, New York

    Google Scholar 

  • De la Chapelle A, Peltomäki P (1998) The genetics of hereditary common cancers. Curr Opin Genet Dev 8:298–303

    Article  PubMed  Google Scholar 

  • Donehower LA et al. (1992) Mice deficient for p53 are developmentally normal, but susceptible to spontaneous tumors. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  • Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Faderl S et al. (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172

    Article  PubMed  CAS  Google Scholar 

  • Fearon ER, Cho KR (1996) The molecular biology of cancer. In: Rimoin DL, Connor JM, Pyeritz RE (eds) Emery and Rimoin’s principles and practice of medical genetics, 3rd edn. Churchill-Livingstone, Edinburgh London New York, pp 405–438

    Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  • Foster BA et al. (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–2510

    Article  PubMed  CAS  Google Scholar 

  • Gowen LC et al. (1998) BRCAl required for transcription-coupled repair of oxidativeDNA damage. Science 281:1009–1012

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  PubMed  CAS  Google Scholar 

  • Hahn WC et al. (1999) Creation of human tumor cells with defined genetic elements. Nature 400:464–468

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Jameson JL (1998) Oncogenes and tumor suppressor genes. In: Jameson JL (ed) Principles of molecular medicine. Humana Press, Totowa, NJ, pp 73–82

    Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386:761–763

    Article  PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1998) Colorectal tumors. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 565–587

    Google Scholar 

  • Kinzler KW, Vogelstein B (1998) Landscaping the cancer terrain. Science 280:1036–1037

    Article  PubMed  CAS  Google Scholar 

  • Kroll TG et al. (2000) PAX8-PPARγ1 fusion in oncogene human thyroid carcinoma. Science 289:1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  • Lohmann DR (1999) RBI gene mutations in retinoblastoma. Hum Mutat 14:283–288

    Article  PubMed  CAS  Google Scholar 

  • Malkin D (1998) The Li-Fraumeni syndrome. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 353–407

    Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  • Park M (1998) Oncogenes. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 205–228

    Google Scholar 

  • Passarge E (2001) Color atlas of genetics, 2nd edn. Thieme, Stuttgart New York

    Google Scholar 

  • Pérou CM et al. (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  Google Scholar 

  • Prescher G, Bornfeld N, Hirche H, Horsthemke B, Jockel KH, Becher R (1996) Prognostic implications of monosomy 3 in uveal melanoma. Lancet 347:1222–1225

    Article  PubMed  CAS  Google Scholar 

  • Rahman N, Stratton MR (1998) The genetics of breast cancer susceptibility. Ann Rev Genet 32:95–121

    Article  PubMed  CAS  Google Scholar 

  • Resnik R (1999) Cancer during pregnancy. N Engl J Med 341:120–121

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (eds) (1998) The genetic basis of human cancer. McGraw-Hill, New York

    Google Scholar 

  • Welcsh PL, Schubert EL, King MC (1998) Inherited breast cancer: an emerging picture. Clin Genet 54:447–458

    Article  PubMed  CAS  Google Scholar 

  • Welcsh PL, Owens KN, King MC (2000) Insights into the functions of BRCAl and BRCA2. Trends Genet 16:69–74

    Article  PubMed  CAS  Google Scholar 

  • Wolf U (1974) Theodor Boveri and his book “on the problem of the origin of malignant tumors”. In: German J (ed) Chromosomes and cancer. Wiley & Sons, New York, pp 3–20

    Google Scholar 

  • Yu H et al. (1998) Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q et al. (1999) Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoms with 6(l;14)(p22;q32). Nat Genet 22:63–68

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Passarge, E. (2001). Tumorerkrankungen — Einführung aus genetischer Sicht. In: Ganten, D., Ruckpaul, K., Hahn, S.A., Schmiegel, W. (eds) Molekularmedizinische Grundlagen von hereditären Tumorerkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56889-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56889-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63219-8

  • Online ISBN: 978-3-642-56889-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics