Advertisement

Tumorerkrankungen — Einführung aus genetischer Sicht

  • Eberhard Passarge
Part of the Molekulare Medizin book series (MOLMED)

Zusammenfassung

Jede der etwa 100 verschiedenen Formen von Krebs (maligne Tumoren) ist das Ergebnis von grundlegenden, zelluläre Funktionen betreffenden Veränderungen von genetischen Informationen in den Tumorzellen. In diesem Sinn ist Krebs genetisch bedingt. Jedoch sind die meisten Formen von Krebs nicht erblich, von wichtigen Ausnahmen abgesehen. Das Spektrum der an der Krebsentstehung beteiligten Gene und die Mechanismen ihrer Störung sind breit. Dies resultiert aus der Vielfältigkeit von Genen und Gensystemen, welche die Zellteilung und Differenzierung in verschiedenen Geweben kontrollieren. Angesichts aller Unterschiede in der Diagnostik und der Behandlung der verschiedenen Formen von Krebs eignen sich die genetischenAspekte der Krebsentstehungals Grundlage für das Verständnis. Diese Einführung zum „Handbuch der molekularen Medizin“, Band 9 und 10 über Tumorerkrankungen, soll die Orientierung erleichtern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Antonelli NM et al. (1996) Cancer in pregnancy: a review of the literature. Parts I and II. Obstet Gynecol Surv 51:125–142PubMedCrossRefGoogle Scholar
  2. Barrett MT et al. (1999) Evolution of neoplastic cell lineages in Barrett oesophagus cancer. Nat Genet 22:106–109PubMedCrossRefGoogle Scholar
  3. Bartram CR et al. (1983) Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306:277–280PubMedCrossRefGoogle Scholar
  4. Bell DW et al. (1999) Heterozygous germline hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2828–2831CrossRefGoogle Scholar
  5. Boland CR (1998) Hereditary nonpolyposis colorectal cancer: In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 333–346Google Scholar
  6. Catlin E A et al. (1999) Transplacental transmission of natural-killer-cell lymphoma. N Engl J Med 341:85–91PubMedCrossRefGoogle Scholar
  7. Collins FS, Trent JM (1998) Cancer genetics. In: Fauci AS, Braunwald E, Isselbacher KJ et al. (eds) Harrison’s principies of internal medicine, 14th edn. McGraw-Hill, New YorkGoogle Scholar
  8. De la Chapelle A, Peltomäki P (1998) The genetics of hereditary common cancers. Curr Opin Genet Dev 8:298–303PubMedCrossRefGoogle Scholar
  9. Donehower LA et al. (1992) Mice deficient for p53 are developmentally normal, but susceptible to spontaneous tumors. Nature 356:215–221PubMedCrossRefGoogle Scholar
  10. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322PubMedCrossRefGoogle Scholar
  11. Faderl S et al. (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172PubMedCrossRefGoogle Scholar
  12. Fearon ER, Cho KR (1996) The molecular biology of cancer. In: Rimoin DL, Connor JM, Pyeritz RE (eds) Emery and Rimoin’s principles and practice of medical genetics, 3rd edn. Churchill-Livingstone, Edinburgh London New York, pp 405–438Google Scholar
  13. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMedCrossRefGoogle Scholar
  14. Foster BA et al. (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–2510PubMedCrossRefGoogle Scholar
  15. Gowen LC et al. (1998) BRCAl required for transcription-coupled repair of oxidativeDNA damage. Science 281:1009–1012PubMedCrossRefGoogle Scholar
  16. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312PubMedCrossRefGoogle Scholar
  17. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158PubMedCrossRefGoogle Scholar
  18. Hahn WC et al. (1999) Creation of human tumor cells with defined genetic elements. Nature 400:464–468PubMedCrossRefGoogle Scholar
  19. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  20. Jameson JL (1998) Oncogenes and tumor suppressor genes. In: Jameson JL (ed) Principles of molecular medicine. Humana Press, Totowa, NJ, pp 73–82Google Scholar
  21. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170PubMedCrossRefGoogle Scholar
  22. Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386:761–763PubMedCrossRefGoogle Scholar
  23. Kinzler KW, Vogelstein B (1998) Colorectal tumors. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 565–587Google Scholar
  24. Kinzler KW, Vogelstein B (1998) Landscaping the cancer terrain. Science 280:1036–1037PubMedCrossRefGoogle Scholar
  25. Kroll TG et al. (2000) PAX8-PPARγ1 fusion in oncogene human thyroid carcinoma. Science 289:1357–1360PubMedCrossRefGoogle Scholar
  26. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649PubMedCrossRefGoogle Scholar
  27. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331PubMedCrossRefGoogle Scholar
  28. Lohmann DR (1999) RBI gene mutations in retinoblastoma. Hum Mutat 14:283–288PubMedCrossRefGoogle Scholar
  29. Malkin D (1998) The Li-Fraumeni syndrome. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 353–407Google Scholar
  30. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28PubMedCrossRefGoogle Scholar
  31. Park M (1998) Oncogenes. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer. McGraw-Hill, New York, pp 205–228Google Scholar
  32. Passarge E (2001) Color atlas of genetics, 2nd edn. Thieme, Stuttgart New YorkGoogle Scholar
  33. Pérou CM et al. (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  34. Prescher G, Bornfeld N, Hirche H, Horsthemke B, Jockel KH, Becher R (1996) Prognostic implications of monosomy 3 in uveal melanoma. Lancet 347:1222–1225PubMedCrossRefGoogle Scholar
  35. Rahman N, Stratton MR (1998) The genetics of breast cancer susceptibility. Ann Rev Genet 32:95–121PubMedCrossRefGoogle Scholar
  36. Resnik R (1999) Cancer during pregnancy. N Engl J Med 341:120–121PubMedCrossRefGoogle Scholar
  37. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340PubMedCrossRefGoogle Scholar
  38. Vogelstein B, Kinzler KW (eds) (1998) The genetic basis of human cancer. McGraw-Hill, New YorkGoogle Scholar
  39. Welcsh PL, Schubert EL, King MC (1998) Inherited breast cancer: an emerging picture. Clin Genet 54:447–458PubMedCrossRefGoogle Scholar
  40. Welcsh PL, Owens KN, King MC (2000) Insights into the functions of BRCAl and BRCA2. Trends Genet 16:69–74PubMedCrossRefGoogle Scholar
  41. Wolf U (1974) Theodor Boveri and his book “on the problem of the origin of malignant tumors”. In: German J (ed) Chromosomes and cancer. Wiley & Sons, New York, pp 3–20Google Scholar
  42. Yu H et al. (1998) Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279:1219–1222PubMedCrossRefGoogle Scholar
  43. Zhang Q et al. (1999) Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoms with 6(l;14)(p22;q32). Nat Genet 22:63–68PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Eberhard Passarge
    • 1
  1. 1.Institut für HumangenetikUniversitätsklinikum EssenEssen

Personalised recommendations