Skip to main content

Molekulare Grundlagen des Diabetes insipidus centralis und renalis

  • Chapter
Molekularmedizinische Grundlagen von Endokrinopathien

Part of the book series: Molekulare Medizin ((MOLMED))

  • 179 Accesses

Zusammenfassung

Der Wasserhaushalt aller Primaten und Säugetiere unterliegt einer strengen Kontrolle: Eine Erhöhung der Plasmaosmolarität um <2% oder eine Verminderung des Plasmavolumens um <10% führen zu einer vermehrten Freisetzung des antidiuretischen Hormons (ADH). Da es bei Säugetieren zudem eine Gefäßverengung hervorruft, wird es auch als Vasopressin (AVP) bezeichnet. Diese Bezeichnung hat sich international durchgesetzt. AVP ist ein zyklisches Nonapeptid (Abb. 9.1), dessen Aminosäuresequenz bei fast allen Säugetieren identisch ist. Lediglich beim Schwein findet sich an Position 8 anstelle eines Arginin-ein Lysinrest (Tabelle 9.1). Bei den Reptilien, Amphibien und Wirbellosen wird der Wasserhaushalt ebenfalls über vasopressinähnliche Peptide reguliert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Acher R (1979) Neurophysine — molekulare und zelluläre Aspekte. Angew Chemie 91:905–919

    CAS  Google Scholar 

  • Ala Y, Morin D, Mouillac B et al. (1998) Functional studies of twelve mutant V2 vasopressin receptor s related to nephrogenic diabetes insipidus: molecular basis of a mild cIinieal phenotype. J Am Soc Nephrol 9:1861–1872

    PubMed  CAS  Google Scholar 

  • Albertazzi E, Zanchetta D, Barbier P et al. (2000) Nephrogenic diabetes insipidus: functional analysis of new AVPR2 mutation s identified in Italian families. J Am Soc Nephrol 11:1033–1043

    PubMed  CAS  Google Scholar 

  • Allen HM, Jackson RL, Winchester MD, Deck LV, Allon M (1989) Indomethacin in the treatment of lithium-induced nephrogenic diabetes insipidus. Arch Intern Med 149:1123–1126

    PubMed  CAS  Google Scholar 

  • Alon U, Chan JC (1985) Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol 5:9–13

    PubMed  CAS  Google Scholar 

  • Andersen-Beckh B, Dehe M, Schülein R et al. (1999) Polarized expression of the vasopressin V2 receptor in Madin-Darby canine kidney cells. Kidney Int 56:517–527

    PubMed  CAS  Google Scholar 

  • Arthus MF, Lonergan M, Crumley MJ et al. (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054

    PubMed  CAS  Google Scholar 

  • Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H (1992) Amissense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 11:19–23

    PubMed  CAS  Google Scholar 

  • Barak LS, Oakley RH, Laporte SA, Caron MG (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 98:93–98

    PubMed  CAS  Google Scholar 

  • Barnes LD, Engel AG, Dousa TP (1975) Studies on in vitro polymerization of tubulin from renal medullary extracts. Biochim Biophys Acta 405:422–433

    PubMed  CAS  Google Scholar 

  • Batlle DC, Riotte AB von, Gaviria M, Grupp M (1985) Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N Engl J Med 312:408–414

    PubMed  CAS  Google Scholar 

  • Beck N, Singh H, Reed SW, Murdaugh HV, Davis BB (1974) Pathogenic role of cyclic AMP in the impairment of urinary concentrating ability in acute hypercalcemia. J Clin Invest 54:1049–1055

    PubMed  CAS  Google Scholar 

  • Bendz H, Aurell M, Balldin J, Mathe AA, Sjodin I (1994) Kidney damage in long-term lithium patients: a crosssectional study of patients with 15 years or more on lithium. Nephrol Dial Transplant 9:1250–1254

    PubMed  CAS  Google Scholar 

  • Bendz H, Sjodin I, Aurell M (1996) Renal function on and off lithium in patients treated with lithium for 15 years or more. A controlled, prospective lithium-withdrawal study. Nephrol Dial Transplant 11:457–460

    PubMed  CAS  Google Scholar 

  • Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol (Berl) 81:345–348

    CAS  Google Scholar 

  • Berl T, Aisenbrey GA, Linas SL (1980) Renal concentrating defect in the hypokalemic rat is prostagiandin independent. Am J Physiol 238:F37–41

    PubMed  CAS  Google Scholar 

  • Beuret N, Rutishauser J, Bider MD, Spiess M (1999) Mechanism of endoplasmic reticulum retent ion of mutant vasopressin precursor caused by a signal peptide truncation associated with diabetes insipidus. J Biol Chem 274: 18965–18972

    PubMed  CAS  Google Scholar 

  • Bichet DG (1997) Autosomal dominant and autosomal recessive nephrogenic diabetes insipidus: novel mutations in the AQP2 gene. Annual Meeting of the American Society of Nephrology, Philadelphia, USA

    Google Scholar 

  • Bichet DG (1999) Congenital severe diabetes insipidus. Most patients have nephrogenic diabetes insipidus, but some patients have autosomal-recessive diabetes insipidus. NDI European Conference, Amsterdam

    Google Scholar 

  • Bichet DG, Razi M, Lonergan M et al. (1988) Hemodynamic and coagulation responses to 1-desamino[8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 318:881–887

    PubMed  CAS  Google Scholar 

  • Bichet DG, Ruel N, Arthus MF, Lonergan M, Hendy GN, Bichet DG (1990) Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron 56:449–450

    PubMed  CAS  Google Scholar 

  • Biehet DG, Arthus MF, Lonergan M et al. (1993) X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J Clin Invest 92: 1262–1268

    Google Scholar 

  • Biehet DG, Birnbaumer M, Lonergan M et al. (1994) Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insip idus. Am J Hum Genet 55:278–286

    Google Scholar 

  • Biehet DG, Oksche A, Rosenthai W (1997) Congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 8: 1951–1958

    Google Scholar 

  • Bichet DG, Arthus MF, Lonergan M, Morgan K, Fujiwara TM (1998) Hereditary central diabetes insipidus: autosomal dominant and autosomal recessive phenotypes due to mutations in the prepro-AVP-NPII gene. 31th Annual Meeting of the American Society of Nephrology, Pennsylvania, USA

    Google Scholar 

  • Birnbaumer M, Seibold A, Gilbert S et al. (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335

    PubMed  CAS  Google Scholar 

  • Birnbaumer M, Gilbert S, Rosenthai W (1994) An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to the Gs/adenylyl cyclase system. Mol Endocrinol 8:886–894

    PubMed  CAS  Google Scholar 

  • Boton R, Gaviria M, Batlle DC (1987) Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis 10:329–345

    PubMed  CAS  Google Scholar 

  • Brakch N, Boussetta H, Rholam M, Cohen P (1989) Processing endoprotease recognizes a structural feature at the cleavage site of pept ide prohormones. The pro-ocytocin/ neurophysin model. J Biol Chem 264:15912–15916

    PubMed  CAS  Google Scholar 

  • Brakch N, Rholam M, Boussetta H, Cohen P (1993) Role of beta-turn in proteolytic processing of pept ide hormone precursors at dibasic sites. Biochemistry 32:4925–4930

    PubMed  CAS  Google Scholar 

  • Braverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus: a case report with autopsy findings. Ann Intern Med 63:503–508

    PubMed  CAS  Google Scholar 

  • Breslow E, Burman S (1990) Molecular, thermodynamic, and biological aspects of recognition and function in neurophysin-hormone systems: a model system for the analysis of protein-peptide interactions. Adv Enzymol Relat Areas Mol Biol 63:1–67

    PubMed  CAS  Google Scholar 

  • Breyer MD, Ando Y (1994) Hormonal signaling and regulation of salt and water transport in the collecting duct. Annu Rev Physiol 56:711–739

    PubMed  CAS  Google Scholar 

  • Calvo B, Bilbao JR, Urrutia I, Eizaguirre J, Gaztambide S, Castano L (1998) Identification of a novel nonsense mutation and amissense substitution in the vasopressinneurophysin II gene in two Spanish kindreds with familial neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 83:995–997

    PubMed  CAS  Google Scholar 

  • Canfield MC, Tamarappoo BK, Moses AM, Verkman AS, Holtzman EJ (1997) Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response. Hum Mol Genet 6:1865–1871

    PubMed  CAS  Google Scholar 

  • Charmandari E, Brook CGD (1999) 20 years of experience in idiopathic central diabetes insipidus. Lancet 353:2212–2213

    PubMed  CAS  Google Scholar 

  • Chen LQ, Rose JP, Breslow E et al. (1991) Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc Natl Acad Sci USA 88:4240–4244

    PubMed  CAS  Google Scholar 

  • Cheng A, Hoek AN van, Yeager M, Verkman AS, Mitra AK (1997) Three-dimensional organization of a human water channel. Nature 387:627–630

    PubMed  CAS  Google Scholar 

  • Chou CL, Ma T, Yang B, Knepper MA, Verkman AS (1998) Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin-4 knockout mice. Am J Physiol 274:C549–C554

    PubMed  CAS  Google Scholar 

  • Chou CL, Knepper MA, Hoek AN et al. (1999) Reduced water permeability and altered ultrastructure in thin descending limb of Henle in aquaporin-1 null mice. J Clin Invest 103:491–496

    PubMed  CAS  Google Scholar 

  • Christensen S, Kusano E, Yusufi AN, Murayama N, Dousa TP (1985) Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Invest 75:1869–1879

    PubMed  CAS  Google Scholar 

  • Coffey AK, O’Sullivan DJ, Homma S, Dousa TP, Valtin H (1991) Induction of intramembranous particle clusters in mice with nephrogenic diabetes insipidus. Am J Physiol 261:F640–666

    PubMed  CAS  Google Scholar 

  • Cotte N, Balestre MN, Phalipou S et al. (1998) Identification of residues responsible for the selective binding of peptide antagonists and agonists in the V2 vasopressin receptor. J Biol Chem 273:29462–29468

    PubMed  CAS  Google Scholar 

  • Deen PMT (1999) Routing and function of mutant AQP2 water channels in nephrogenie diabetes insipidus. NDI European Conference, Amsterdam

    Google Scholar 

  • Deen PM, Verdijk MA, Knoers NV et al. (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    PubMed  CAS  Google Scholar 

  • Deen PM, Weghuis DO, Sinke RJ, Geurts van Kessel A, Wieringa B, Os CH van (1994) Assignment of the human gene for the water channel of renal collecting duct aquaporin 2 (AQP2) to chromosome 12 region q12-q13. Cytogenet Cell Genet 66:260–262

    PubMed  CAS  Google Scholar 

  • Deen PM, Croes H, Aubel RA van, Ginsei LA, Os CH van (1995) Water channels encoded by mutant aquaporin-2 genes in nephrogenie diabetes insipidus are impaired in their cellular routing. J Clin Invest 95:2291–2296

    PubMed  CAS  Google Scholar 

  • DiMeglio LA, Gagliardi PC, Browning JE, Quigley CA, Repaske DR (2001) Amissense mutation encoding cys67gly in neurophysin ii is associated with early onset autosomal dominant neurohypophyseal diabetes insipidus. Mol Genet Metab 72:39–44

    PubMed  CAS  Google Scholar 

  • Earm JH, Christensen BM, Frokiaer J et al. (1998) Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol 9:2181–2193

    PubMed  CAS  Google Scholar 

  • Ecelbarger CA, Terris J, Frindt G et al. (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 269:F663–672

    PubMed  CAS  Google Scholar 

  • Fassina G, Chaiken IM (1988) Structural requirements of peptide hormone binding for peptide-potentiated self-association of bovine neurophysin II. J Biol Chem 263: 13539–13543

    PubMed  CAS  Google Scholar 

  • Faust CJ, Gonzales JC, Seibold A, Birnbaumer M, Herman GE (1993) Comparative mapping on the mouse and human X chromosomes of a human cDNA clone encoding the vasopressin renal-type receptor (AVP2R). Genomics 15:439–441

    PubMed  CAS  Google Scholar 

  • Feuerstein G, Zilberman Y, Hemmendinger R, Lichtenberg D (1981) Attenuation of the lithium-induced diabetes-insipidus-like syndrome by amiloride in rats. Neuropsychebiology 7:67–73

    CAS  Google Scholar 

  • Frokiaer J, Marples D, Knepper MA, Nielsen S (1996) Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 270:F657–668

    PubMed  CAS  Google Scholar 

  • Frokiaer J, Christensen BM, Marples D et al. (1997) Down-regulation of aquaporin-2 paralleis changes in renal water excretion in unilateral ureteral obstruction. Am J Physiol Renal Physiol 42:F213–F223

    Google Scholar 

  • Frokiaer J, Marples D, Valtin H, Morris JF, Knepper MA, Nielsen S (1999) Low aquaporin-2 levels in polyurie DI+/+ severe miee with constitutively high cAMP-phosphodiesterase activity. Am J Physiol 276:FI79–190

    Google Scholar 

  • Fujii H, Iida S, Moriwaki K (2000) Familial neurohypophyseal diabetes insipidus associated with a novel mutation in the vasopressin-neurophysin II gene. Int J Mol Med 5:229–234

    PubMed  CAS  Google Scholar 

  • Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    PubMed  CAS  Google Scholar 

  • Gagliardi PC, Bernasconi S, Repaske DR (1997) Autosomal dominant neurohypophyseal diabetes insipidus associated with amissense mutation encoding Gly23→ Val in neurophysin II. J Clin Endocrinol Metab 82:3643–3646

    PubMed  CAS  Google Scholar 

  • Goji K, Kuwahara M, Gu Y, Matsuo M, Marumo F, Sasaki S (1998) Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function. J Clin Endocrinol Metab 83:3205–3209

    PubMed  CAS  Google Scholar 

  • Goldberg H, Clayman P, Skorecki K (1988) Mechanism of Li inhibition of vasopressin-sensitive adenylate cyclase in cultured renal epithelial cells. Am J Physiol 255:F995–1002

    PubMed  CAS  Google Scholar 

  • Grant FD, Ahmadi A, Hosley CM, Majzoub JA (1998) Two novel mutations of the vasopress in gene associated with familial diabetes insipidus and identification of an asymptomatic carrier infant. J Clin Endocrinol Metab 83:3958–3964

    PubMed  CAS  Google Scholar 

  • Green JR, Buchan GC, Alvord EC Jr, Swanson AG (1967) Hereditary and idiopathic types of diabetes insipidus. Brain 90:707–714

    PubMed  CAS  Google Scholar 

  • Hansen LK, Rittig S, Roberston GL (1997) Genetic basis of familial neurohypophyseal diabetes insipidus. Trends Endocrinol Metab 8:363–372

    PubMed  CAS  Google Scholar 

  • Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Google Scholar 

  • Heijne G (1984) How signal sequences maintain cleavage specificity. J Mol Biol 173:243–251

    Google Scholar 

  • Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    Google Scholar 

  • Heppner C, Kotzka J, Bullmann C, Krone W, Muller Wieland D (1998) Identification of mutations of the arginine vasopressin-neurophysin 11 gene in two kindreds with familial central diabetes insipidus. J Clin Endocrinol Metab 83:693–696

    PubMed  CAS  Google Scholar 

  • Hetmar O, Brun C, Clemmesen L, Ladefoged J, Larsen S, Rafaelsen OJ (1987) Lithium: long-term effects on the kidney. 11. Structural changes. J Psychiatr Res 21:279–288

    PubMed  CAS  Google Scholar 

  • Hetmar O, Brun C, Ladefoged J, Larsen S, Bolwig TG (1989) Long-term effects of lithium on the kidney: functionalmorphological correlations. J Psychiatr Res 23:285–297

    PubMed  CAS  Google Scholar 

  • Hober C, Vantyghem MC, Racadot A, Cappoen JP, Lefebvre J (1992) Normal hemodynamic and coagulation responses to I-deamino-8-D-arginine vasopressin in a case of lithium-induced nephrogenic diabetes insipidus. Results of treatment by a prostagiandin synthesis inhibitor (indomethacin). Horm Res 37:190–195

    PubMed  CAS  Google Scholar 

  • Hochberg Z, VanLieburg A, Even L et al. (1997) Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation. J Clin Endocrinol Metab 82:686–689

    PubMed  CAS  Google Scholar 

  • Hohler T, Teuber G, Wanitschke R, Meyer zum Buschenfeld KH (1994) Indomethacin treatment in amphoteriein B induced nephrogenic diabetes insipidus. Clin Invest 72:769–771

    CAS  Google Scholar 

  • Holtzman EJ, Kolakowski LF, Geifman Holtzman O et al. (1994) Mutations in the vasopressin V2 receptor gene in two families with nephrogenie diabete s insipidus. J Am Soc Nephrol 5:169–176

    PubMed  CAS  Google Scholar 

  • Homma S, Gapstur SM, Coffey A, Valtin H, Dousa TP (1991) Role of cAMP-phosphodiesterase isozymes in pathogenesis of murine nephrogenic diabetes insipidus. Am J Physiol 261:F345–F353

    PubMed  CAS  Google Scholar 

  • Hozawa S, Holtzman EJ, Ausiello DA (1996) cAMP motifs regulating transcription in the aquaporin 2 gene. Am J Physiol 270:C1695–C1702

    PubMed  CAS  Google Scholar 

  • Hwang S, Tuason VB (1980) Long-term maintenance lithium therapy and possible irreversible renal damage. J Clin Psychiatry 41:11–19

    PubMed  CAS  Google Scholar 

  • Inaba S, Hatakeyama H, Taniguchi N, Miyamori I (2001) The property of a novel V2 receptor mutant in a patient with nephrogenic diabetes insipidus. J Clin Endocrinol Metab 86:381–385

    PubMed  CAS  Google Scholar 

  • Inase N, Pushimi K, Ishibashi K et al. (1995) Isolation of human aquaporin 3 gene. J Biol Chem 270:17913–17916

    PubMed  CAS  Google Scholar 

  • Inoue T, Nielsen S, Mandon B, Terris J, Kishore BK, Knepper MA (1998) SNAP-23 in rat kidney: colocalization with aquaporin-2 in collecting duct vesicles. Am J Physiol 275:F752–F760

    PubMed  CAS  Google Scholar 

  • Ishibashi K, Yamauchi K, Kageyama Y et al. (1998) Molecular characterization of human aquaporin-7 gene and its chromosomal mapping, Biochim Biophys Acta 1399:62–66

    PubMed  CAS  Google Scholar 

  • Ho M, Mori Y, Oiso Y, Saito H (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest 87:725–728

    Google Scholar 

  • Ho M, Oiso Y, Murase T et al. (1993) Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus, J Clin Invest 91:2565–2571

    PubMed  CAS  Google Scholar 

  • Ho M, Iameson JL, Ito M (1997) Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus, Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J Clin Invest 99:1897–1905

    PubMed  CAS  Google Scholar 

  • Ito M, Yu RN, Jameson JL, Ito M (1999) Mutant vasopressin precursors that cause autosomal dominant neurohypophyseal diabetes insipidus retain dimerization and impair the secretion of wild-type proteins. J Biol Chem 274: 9029–9037

    PubMed  CAS  Google Scholar 

  • Iwasaki Y, Oiso Y, Kondo K et al. (1991) Aggravation of subclinical diabetes insipidus during pregnancy. N Engl J Med 324:522–526

    PubMed  CAS  Google Scholar 

  • Jap BK, Li H (1995) Structure of the osmo-regulated H20 channel, AQP-CHIP, in projection at 3.5 Aresolution. J Mol Biol 251:413–420

    PubMed  CAS  Google Scholar 

  • Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci USA 91:13052–13056

    PubMed  CAS  Google Scholar 

  • Kamsteeg EJ, Wormhoudt TAM, Rijss JPL, Os CH van, Deen PMT (1999) An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus, EMBO J 18:2394–2400

    PubMed  CAS  Google Scholar 

  • Kanmera T, Chaiken IM (1985) Molecular properties of the oxytocin/bovine neurophysin biosynthetic precursor. Studies using a sernisynthetic precursor. J Biol Chem 260:8474–8482

    PubMed  CAS  Google Scholar 

  • Kim JK, Summer SN, Berl T (1984) The cyclic AMP system in the inner medullary collecting duct of the potass iumdepleted rat. Kidney Int 26:384–391

    PubMed  CAS  Google Scholar 

  • Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA (1999) Vasopress in increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol 276:F96–F103

    PubMed  CAS  Google Scholar 

  • Klußmann E, Marie K, Wiesner B, Beyermann M, Rosenthai W (1999) Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 274:4934–4938

    PubMed  Google Scholar 

  • Klußman E, Marie K, Rosenthal W (2000) The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol 141:33–95

    Google Scholar 

  • Kojro E, Eich P, Gimpl G, Fahrenholz F (1993) Direct identification of an extracellular agonist bin ding site in the renal V2 vasopressin receptor. Biochemistry 32:13537–13544

    PubMed  CAS  Google Scholar 

  • Kosten TR, Forrest JN (1986) Treatment of severe lithiuminduced polyuria with amiloride. Am J Psychiatry 143: 1563–1568

    PubMed  CAS  Google Scholar 

  • Krause G, Hermosilla R, Oksche A, Rutz C, Rosenthai W, Schülein R (2000) Molecular and conformational features of a transport-relevant domain in the C-terminal tail of the vasopressin V2 receptor. Mol Pharmacol 57:232–242

    PubMed  CAS  Google Scholar 

  • Krisch B, Nahke P, Richter D (1986) Immunocytochemical staining of supraoptic neurons from homozygous Brattleboro rats by use of antibodies against two domains of the mutated vasopressin precursor. Cell Tissue Res 244: 351–358

    PubMed  CAS  Google Scholar 

  • Kuo JF, Krueger BK, Sanes JR, Greengard P (1970) Cyclic nucleotide-dependent protein kinases, V. Preparation and properties of adenosine 3′,5′-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta 212:79–91

    PubMed  CAS  Google Scholar 

  • Kurokawa H, Fujisawa I, Nakano Y et al. (1998) Posterior lobe of the pituitary gland: correlation between signal intensity on Tl-weighted MR images and vasopressin concentration. Radiology 207:79–83

    PubMed  CAS  Google Scholar 

  • Kuwahara M (1998) Aquaporin-2, a vasopressin-sensitive water channel, and nephrogenic diabetes insipidus. Intern Med 37:215–217

    PubMed  CAS  Google Scholar 

  • Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303

    PubMed  CAS  Google Scholar 

  • Liebenhoff U, Rosenthai W (1995) Identification of Rab3-, Rab5a-and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressinregulated water channel. FEBS Lett 365:209–213

    PubMed  CAS  Google Scholar 

  • Lieburg AF van, Verdijk MA, Knoers VV et al. (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55:648–652

    PubMed  Google Scholar 

  • Lieburg AF van, Knoers VV, Mallmann R, Proesmans W, Heuvel LP van den, Monnens LA (1996) Normal fibrinolytic responses to I-desamino-8-D-arginine vasopressin in patients with nephrogenic diabetes insipidus caused by mutations in the aquaporin 2 gene. Nephron 72:544–546

    PubMed  Google Scholar 

  • Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–339

    PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1997) Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. J Clin Invest 100:957–962

    PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    PubMed  CAS  Google Scholar 

  • Maghnie M, Villa A, Arico M et al. (1992) Cerrelation between magnetic resonance imaging of posterior pituitary and neurohypophyseal function in children with diabetes insipidus, J Clin Endocrinol Metab 74:795–800

    PubMed  CAS  Google Scholar 

  • Mandon B, Chou CL, Nielsen S, Knepper MA (1996) Syntaxin-4 is localized to the apical plasma membrane of rat renal collecting duct cells: possible role in aquaporin-2 trafficking. J Clin Invest 98:906–913

    PubMed  CAS  Google Scholar 

  • Maric K, Oksche A, Rosenthal W (1998) Aquaporin-2 expression in pr imary cultured rat inner medullary collecting duct cells. Am J Physiol 275:F796–F801

    PubMed  CAS  Google Scholar 

  • Markowitz GS, Radhakrishnan J, Kambham N, Valeri AM, Hines WH, D’Agati VD (2000) Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol 11:1439–1448

    PubMed  CAS  Google Scholar 

  • Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S (1995) Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 95:1838–1845

    PubMed  CAS  Google Scholar 

  • Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S (1996) Hypocalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest 97:1960–1968

    PubMed  CAS  Google Scholar 

  • Martinez EJ, Sinnott JTt, Rodriguez Paz G, Oehler RL (1993) Lithium-induced nephrogenic diabetes insipidus treated with indomethacin. South Med J 86:971–973

    PubMed  CAS  Google Scholar 

  • Marumo F, Edelman IS (1971) Effects of Ca++ and prostagiandin EI on vasopressin activation of renal adenyl cyclase. J Clin Invest 50:1613–1620

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Uchida S, Rai T, Sasaki S, Marumo F (1997) Transcriptional regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 8:861–867

    PubMed  CAS  Google Scholar 

  • Matsumura Y, Uchida S, Kondo Y, Miyazaki H, Ko SB, Hayama A, Morimoto T, Liu W, Arisawa M, Sasaki S, Marumo F (1999) Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet 21:95–98

    PubMed  CAS  Google Scholar 

  • McLeod JF, Kovacs L, Gaskill MB, Rittig S, Bradley GS, Robertson GL (1993) Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J Clin Endocrinol Metab 77:599a–599g

    PubMed  CAS  Google Scholar 

  • Michel G, Rouille Y, Chauvet J, Acher R (1994) Action of neurohypophysial granule Lys-Arg endopeptidase on synthetic polypeptides comprising the processing sequence of provasopressin-neurophysin. Biosei Rep 14:171–178

    CAS  Google Scholar 

  • Moullier P, Friedlander G, Calise D, Ronco P, Perricaudet M, Ferry N (1994) Adenoviral-mediated gene transfer to renal tubular cells in vivo, Kidney Int 45:1220–1225

    PubMed  CAS  Google Scholar 

  • Mulders SM, Knoers NV, Van Lieburg AF et al. (1997) New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol 8:242–248

    PubMed  CAS  Google Scholar 

  • Mulders SM, Bichet DG, Rijss JP et al. (1998) An aquaporin2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102:57–66

    PubMed  CAS  Google Scholar 

  • Nagasaki H, Ito M, Yuasa H et al. (1995) Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus. J Clin Endocrinol Metab 80:1352–1356

    PubMed  CAS  Google Scholar 

  • Naik DV, Valtin H (1969) Hereditary vasopressin-resistant urinary concentrating defects in mice. Am J Physiol 217: 1183–1190

    PubMed  CAS  Google Scholar 

  • Nielsen S, Muller J, Knepper MA (1993) Vasopressin-and cAMP-induced changes in ultrastructure of isolated perfused inner medullary collecting ducts. Am J Physiol 265:F225–F238

    PubMed  CAS  Google Scholar 

  • Nielsen S, Marples D, Birn H et al. (1995) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with aquaporin-2 water channels. J Clin Invest 96:1834–1844

    PubMed  CAS  Google Scholar 

  • Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA (1996) Cellular and subcellular localization of the vasopressin-regulated urea transporter in rat kidney. Proc Natl Acad Sci USA 93:5495–5500

    PubMed  CAS  Google Scholar 

  • Nijenhuis M, Zalm R, Burbach JP (1999) Mutations in the vasopressin prohormone involved in diabetes insipidus impair endoplasmic reticulum export but not sorting. J Biol Chem 274:21200–21208

    PubMed  CAS  Google Scholar 

  • Nonoguchi H, Owada A, Kobayashi N et al. (1995) Immuno-histochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts. J Clin Invest 96:1768–1778

    PubMed  CAS  Google Scholar 

  • Oksche A, Rosenthai W (1998) The molecular basis of nephrogenic diabetes insipidus. J Mol Med 76:326–37

    PubMed  CAS  Google Scholar 

  • Oksche A, Schulein R, Rutz C et al. (1996) Vasopressin V2 receptor mutants that cause X-linked nephrogenic diabetes insipidus: analysis of expression, processing, and function. Mol Pharmacol 50:820–828

    PubMed  CAS  Google Scholar 

  • Oksche A, Kuhn R, Schülein R, Rosenthai W (1997) Analysis of effects of vasopressin V2 receptor mutations on mRNA turnover. 17th International Congress of Biochemistry and Molecular Biology, San Francisco, CA, 24.–29. August 1997. FASEB J A959

    Google Scholar 

  • Oksche A, Dehe M, Schulein R, Wiesner B, Rosenthal W (1998) Folding and cel1 surface expression of the vasopressin V2 receptor: requirement of the intracellular C-terminus. FEBS Lett 424:57–62

    PubMed  CAS  Google Scholar 

  • Pan Y, Wilson P, Gitschier J (1994) The effect of eight V2 vasopressin receptor mutations on stimulation of adenylyl cyclase and binding to vasopressin. J Biol Chem 269: 31933–31937

    PubMed  CAS  Google Scholar 

  • Pasel K, Schulz A, Timmermann K et al. (2000) Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families. J Clin Endocrinol Metab 85:1703–1710

    PubMed  CAS  Google Scholar 

  • Plenge P, Mellerup ET, Bolwig TG et al. (1982) Lithium treatment: does the kidney prefer one daily dose instead of two? Acta Psychiatr Scand 66:121–128

    PubMed  CAS  Google Scholar 

  • Postina R, Ufer E, Pfeiffer R, Knoers NV, Fahrenholz F (2000) Misfolded vasopressin V2 receptors caused by extracellular point mutations entail congenital nephrogenic diabetes insipidus. Mol Cell Endocrinol 164:31–39

    PubMed  CAS  Google Scholar 

  • Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P (1994) Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265:1585–1587

    PubMed  CAS  Google Scholar 

  • Ramsey TA, Cox M (1982) Lithium and the kidney: a review. Am J Psychiatry 139:443–449

    PubMed  CAS  Google Scholar 

  • Rascher W (1993) Vasopressin (ADH) und seine Sekretionsstörungen. Biosei Ber 55

    Google Scholar 

  • Rascher W, Rosendahl W, Henrichs IA, Maier R, Seyberth HW (1987) Congenital nephrogenic diabetes insipidus vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr Nephrol 1:485–490

    PubMed  CAS  Google Scholar 

  • Rauch F, Lenzner C, Nurnberg P, Frommel C, Vetter U (1996) A novel mutation in the coding region for neuro physin-Il is associated with autosomal dominant neurohypophyseal diabetes insipidus. Clin Endocrinol (Oxf) 44:45–51

    CAS  Google Scholar 

  • Raymond KH, Lifschitz MD, McKinney TD (1987) Prostaglandins and the urinary concentrating defect in potassiurn-depleted rabbits. Am J Physiol 253:F1113–F1119

    PubMed  CAS  Google Scholar 

  • Ren G, Cheng A, Reddy V, Melnyk P, Mitra AK (2000) Three-dimensional fold of the human AQP1 water channel determined at 4 Aresolution by electron crystallogr aphy of two-dimensional crystals embedded in ice. J Mol Biol 301:369–387

    PubMed  CAS  Google Scholar 

  • Repaske DR, Browning JE (1994) A de novo mutation in the coding sequence for neurophysin-II (Pro24 → Leu) is associated with onset and transmission of autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 79:421–427

    PubMed  CAS  Google Scholar 

  • Repaske DR, Summar ML, Krishnamani MR et al. (1996) Recurrent mutations in the vasopressin-neurophysin II gene cause autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab 81:2328–2334

    PubMed  CAS  Google Scholar 

  • Repaske DR, Medlej R, Gultekin EK et al. (1997) Heterogeneity in clinical manifestation of autosomal dominant neurohypophyseal diabetes insipidus caused by a mutation encoding Ala-l → Val in the signal peptide of the arginine vasopressin/neurophysin II/copeptin precursor. J Clin Endocrinol Metab 82:51–56

    PubMed  CAS  Google Scholar 

  • Rholam M, Nicolas P, Cohen P (1985) Salt-dependent structural changes of neurohormones: lithiumions induce conformational rearrangements of oxytocin to a vasopressin-like structure. Biochemistry 24:3345–3349

    PubMed  CAS  Google Scholar 

  • Richter D (1988) Molecular events in expression of vasopressin and oxytoein and their cognate receptors. Am J Physiol 255:F207–F219

    PubMed  CAS  Google Scholar 

  • Riddell DC, Mallonee R, Phillips JA, Parks JS, Sexton LA, Hamerton JL (1985) Chromosomal assignment of human sequences encoding arginine vasopressin-neurophysin II and growth hormone releasing factor. Somat Cell Mol Genet 11:189–195

    PubMed  CAS  Google Scholar 

  • Rittig S, Robertson GL, Siggaard C et al. (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58:107–117

    PubMed  CAS  Google Scholar 

  • RosenthaI W, Seibold A, Antaramian A et al. (1992) Molecular identification of the gene responsible for congenita l nephrogenic diabetes insipidus. Nature 359:233–235

    Google Scholar 

  • RosenthaI W, Antaramian A, Gilbert S, Birnbaumer M (1993) Nephrogenic diabetes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J Biol Chem 268:13030–13033

    Google Scholar 

  • Rosenthai W, Oksche A, Bichet DG (1998) Two genes — one disease: the molecular basis of congenital nephrogenic diabetes insipidus. Advances in Molecular and Cellular Endocrinology, vol 2. Jai Press, Greenwich London

    Google Scholar 

  • Rutishauser J, Boni Schnetzler M, Boni J et al. (1996) A novel point mutation in the translation initiation codon of the pre-pro-vasopres sin-neurophysin II gene: cosegregation with morphological abnormalities and clinical symptom s in autosomal dominant neuroh ypophyseal diabetes insipidus. J Clin Endocrinol Metab 81:192–198

    PubMed  CAS  Google Scholar 

  • Rutishauser J, Kopp P, Gaskill MB, Kotlar TJ, Robertson GL (1999) A novel mutat ion (R97 C) in the neurophysin moiety of prepro-vasopressin-neurophysin II assoeiated with autosomal-dorninant neurohypophyseal diabetes insipidus. Mol Genet Metab 67:89–92

    PubMed  CAS  Google Scholar 

  • Sadeghi H, Birnbaumer M (1999) O-glycosytatton of the V2 vasopressin receptor. Glycobiology 9:731–737

    PubMed  CAS  Google Scholar 

  • Sadeghi HM, Innamorati G, Dagarag M, Birnbaumer M (1997a) Palmitoylation of the V2 vasopressin receptor. Mol Pharmacol 52:21–29

    PubMed  CAS  Google Scholar 

  • Sadeghi H, Robertson GL, Bichet DG, Innamorati G, Birnbaumer M (1997b ) Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Mol Endocrinol 11:1806–1813

    PubMed  CAS  Google Scholar 

  • Sadeghi HM, Innamorati G, Birnbaumer M (1997c) An X-linked NDI mutation reveals a requirement for cell surface V2R expression. Mol Endocrinol 11:706–713

    PubMed  CAS  Google Scholar 

  • Sands JM, Naruse M, Baum M et al. (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water perme ability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    PubMed  CAS  Google Scholar 

  • Sausville E, Carney D, Battey J (1985) The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 260:10236–10241

    PubMed  CAS  Google Scholar 

  • Schmale H, Heinsohn S, Richter D (1983) Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor. EMBO J 2:763–767

    PubMed  CAS  Google Scholar 

  • Schmale H, Bahnsen U, Richter D (1993) Structure and expression of the vasopressin precur sor gene in central diabetes insipidus. Ann NY Acad Sci 689:74–82

    PubMed  CAS  Google Scholar 

  • Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquap orin-I null mice. Proc Natl Acad Sci USA 95:9660–9664

    PubMed  CAS  Google Scholar 

  • Schülein R, Liebenhoff U, Muller H, Birnbaumer M, RosenthaI W (1996) Properties of the human arginine vasopressin V2 receptor after site-directed mutagenesis of its puta tive palmitoylation site. Biochem J 313:611–616

    PubMed  Google Scholar 

  • Schülein R, Hermosilla R, Oksche A et al. (1998a) A dileucine sequence and an upstream glutamate residue in the intracellular carboxyl terminus of the vasopressin V2 receptor are essential for cell surface tran sport in COS.M6 cells. Mol Pharmacol 54:525–535

    PubMed  Google Scholar 

  • Schülein R, Lorenz D, Oksche A et al. (1998b) Polarized cell surface expression of the green fluorescent protein-tagged vasopressin V2 receptor in Madin Darby canine kidney cells. FEBS Letl 441:170–176

    Google Scholar 

  • Schülein R, Zuhlke K, Oksche A, Hermosilla R, Furkert J, Rosenthai W (2000) The role of conserved extracellular cysteine residues in vasopressin V2 receptor function and properties of two naturally occurring mutant receptors with additional extracellular cysteine residues. FEBS Lett 466:101–106

    PubMed  Google Scholar 

  • Seibold A, Brabet P, Rosenthai W, Birnbaumer M (1992) Structure and chromosomal localization of the human antidiuretic hormone receptor gene. Am J Hum Genet 51:1078–1083

    PubMed  CAS  Google Scholar 

  • Seibold A, Dagarag M, Birnbaumer M (1998) Mutations of the DRY motif that preserve beta 2-adrenoceptor coupling. Receptors Channels 5:375–385

    PubMed  CAS  Google Scholar 

  • Shen T, Suzuki Y, Poyard M, Miyamoto N, Defer N, Hanoune J (1997) Expression of adenylyl cyclase mRNAs in the adult, in developing, and in the Brattlebororat kidney. Am J Physiol 273:C323–C330

    PubMed  CAS  Google Scholar 

  • Skordis N, Patsalis PC, Hettinger JA et al. (2000) A novel arginine vasopressin-neurophysin II mutation causes autosomal dominant neurohypophyseal diabetes insipidus and morphologic pituitary changes. Horm Res 53:239–245

    PubMed  CAS  Google Scholar 

  • Takeda S, Lin CT, Morgano PG, McIntyre SJ, Dousa TP (1991) High activity of low-Michaelis-Menten constant 3′,5′-cyclic adenosine monophosphate-phosphodiesterase isozymes in renal inner medulla of mice with hereditary nephrogenic diabetes insipidus. Endocrinology 129:287–294

    PubMed  CAS  Google Scholar 

  • Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267

    PubMed  CAS  Google Scholar 

  • Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 269:F775–F785

    PubMed  CAS  Google Scholar 

  • Tsukaguchi H, Matsubara H, Taketani S, Mori Y, Seido T, Inada M (1995) Binding-, intracellular transport-, and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus. J Clin Invest 96:2043–2050

    PubMed  CAS  Google Scholar 

  • Uchida S, Sasaki S, Fushimi K, Marumo F (1994) Isolation of human aquaporin-CD gene. J Biol Chem 269:23451–23455

    PubMed  CAS  Google Scholar 

  • Ueta Y, Taniguchi S, Yoshida A et al. (1996) A new type of familial central diabetes insipidus caused by a single base substitution in the neurophysin II coding region of the vasopressin gene. J Clin Endocrinol Metab 81:1787–1790

    PubMed  CAS  Google Scholar 

  • Ufer E, Postina R, Gorbulev V, Fahrenholz F (1995) An extracellular residue determines the agonist specificity of V2 vasopressin receptors [published erratum in FEBS Lett (1995) 369:353]. FEBS Lett 362:19–23

    PubMed  CAS  Google Scholar 

  • Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophysial principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 77:701–706

    PubMed  CAS  Google Scholar 

  • Valtin H, Coffey AK, O’Sullivan DJ, Homma S, Dousa TP (1990) Causes of the urinary concentrating defect in mice with nephrogenic diabetes insipidus. Physiol Bohemoslov 39:103–111

    PubMed  CAS  Google Scholar 

  • van den Akker EL, de Groot MR, Abbes AP, Bruggeman EJ, Franken AA, Engel H (2000) Identification of a new mutation (Cys116Gly) in a family with neurogenic diabetes insipidus. Ned Tijdschr Geneeskd 144:941–945

    PubMed  Google Scholar 

  • VargasPoussou R, Forestier L, Dautzenberg MD, Niaudet P, Dechaux M, Antignac C (1997) Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus. J Am Soc NephroI 8:1855–1862

    CAS  Google Scholar 

  • Verkman AS, Lencer WI, Brown D, Ausiello DA (1988) Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 333:268–269

    PubMed  CAS  Google Scholar 

  • Wade JB, McCusker C, Coleman RA (1986) Evaluation of granule exocytosis in toad urinary bladder. Am J Physiol 251:C380–C386

    PubMed  CAS  Google Scholar 

  • Walker RG (1993) Lithium nephrotoxicity. Kidney Int Suppl 42:S93–S98

    PubMed  CAS  Google Scholar 

  • Walker RG, Bennett WM, Davies BM, Kincaid Smith P (1982a) Structural and functional effects of long-term lithium therapy. Kidney Int Suppl 11:S13–S19

    PubMed  CAS  Google Scholar 

  • Walker RG, Davies BM, Holwill BJ, Dowling JP, Kincaid Smith P (1982b) A clinico-pathological study of lithium nephrotoxicity. J Chronic Dis 35:685–695

    PubMed  CAS  Google Scholar 

  • Weinstock RS, Moses AM (1990) Desmopressin and indomethacin therapy for nephrogenic diabetes insipidus in patients receiving lithium carbonate. South Med J 83:1475–1477

    PubMed  CAS  Google Scholar 

  • Wenkert D, Schoneberg T, Merendino JJ et al. (1996) Punctional characterization of five V2 vasopressin receptor gene mutations. Mol Cell Endocrinol 124:43–50

    PubMed  CAS  Google Scholar 

  • Wess J (1999) A mouse model for X-linked nephrogenic diabetes insipidus. NDI European Conference, Amsterdam

    Google Scholar 

  • Willcutts MD, Feiner E, White PC (1999) Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. Hum Mol Genet 8:1303–1307

    PubMed  CAS  Google Scholar 

  • Wood SP, Tickle IJ, Treharne AM et al. (1986) Crystal structure analysis of deamino-oxytocin: conformational flexibility and receptor binding. Science 232:633–636

    PubMed  CAS  Google Scholar 

  • Yamaki M, McIntyre S, Rassier ME, Schwartz JH, Dousa TP (1992) Cyclic 3′,5′-nucleotide diesterases in dynamics of cAMP and cGMP in rat collecting duct cells. Am J Physiol 262:F957–F964

    PubMed  CAS  Google Scholar 

  • Yang B, Gillespie A, Carlson EJ, Epstein CI, Verkman AS (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779

    PubMed  CAS  Google Scholar 

  • Yasui M, Zelenin SM, Celsi G, Aperia A (1997) Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and API elements. Am J Physiol 272:F443–F450

    PubMed  CAS  Google Scholar 

  • Yoshida I, Takeda S, Homma S, Kusano E, Asano Y (1997) Localization of low-KM cAMP phosphodiesterase in rat nephron segments. Kidney Blood Press Res 20:307–311

    PubMed  CAS  Google Scholar 

  • Yuasa H, Ho M, Nagasaki H et al. (1993) Glu-47, which forms a salt bridge between neurophysin-II and arginine vasopress in, is deleted in patients with familial central diabetes insipidus. J Clin Endocrinol Metab 77:600–604

    PubMed  CAS  Google Scholar 

  • Yun J, Schoneberg T, Liu J, Schulz A, Ecelbarger CA, Promeneur D, Nielsen S, Sheng H, Grinberg A, Deng C, Wess J (2000) Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J Clin Invest 106:1361–1371

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oksche, A., Rosenthal, W. (2001). Molekulare Grundlagen des Diabetes insipidus centralis und renalis. In: Ganten, D., Ruckpaul, K., Janssen, O.E., Heufelder, A.E. (eds) Molekularmedizinische Grundlagen von Endokrinopathien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56858-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56858-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63216-7

  • Online ISBN: 978-3-642-56858-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics