Skip to main content

Diabetes mellitus

  • Chapter
  • 171 Accesses

Part of the book series: Molekulare Medizin ((MOLMED))

Zusammenfassung

Der Diabetes mellitus ist die häufigste endokrinmetabolische Erkrankung und betrifft etwa 5% der westlichen Bevölkerung. Spätkomplikationen in Form der Mikro-und Makroangiopathie stellen ein großes gesundheitspolitisches Problem dar. Der Diabetes ist einer der häufigsten Ursachen in Deutschland für die Erblindung, den Einsatz des Nierenersatzverfahrens sowie für die Amputation der unteren Gliedmaßen. Patienten mit Diabetes mellitus entwickeln aber nicht nur mikroangiopathische Gefäßkomplikationen, sondern haben auch ein etwa 3-bis 5fach erhöhtes kard iovaskuläres Risiko. Ziel dieses Beitrages ist es u. a., Beispiele einiger molekularer Prinzipien zu geben, die zurzeit Gegenstand der klinischen Grundlagenforschung sind und wahrscheinlich auch in der Zukunft von klinischer Bedeutung für die Pathophysiologie Diagnostik und Therapie der häufigsten Diabetesformen sind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abe H, Yamada N, Kamata K et al.(1998) Hypertension, hypertriglyceridemia and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest 101:1784–1788

    PubMed  CAS  Google Scholar 

  • Aguilar-Bryan L, Clement JPIV, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    PubMed  CAS  Google Scholar 

  • Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun Nfl(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054

    PubMed  CAS  Google Scholar 

  • Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med 15:539–553

    PubMed  CAS  Google Scholar 

  • AI-Hasani H, Eisermann B, Tennagels N, Magg C, Passlack W, Koenen M, Müller-Wieland D, Meyer HE, Klein HW (1997) Identification of Ser-1275 and Ser-B09 as autophosphorylation sites of the insulin receptor. FEBS Lett 400(1):65–70

    Google Scholar 

  • American Diabetes Assceiation (1999) Clinical practice recommendations 1999. Diabetes Care [Suppl 1] 22

    Google Scholar 

  • Araki E, Lipes MA, Patti ME et al. (1994) Alternative pathways of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190

    PubMed  CAS  Google Scholar 

  • Auwerx J, Mangelsdorf D (2000) X-ceptors, nuclear receptors for metabolism. Atherosclerosis XII. In: Stemme S, Olsson AG (eds) Elsevier Science B.Y. pp 21–39

    Google Scholar 

  • Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182:31–48

    PubMed  CAS  Google Scholar 

  • Barker DJ, Haies CN, Fall CH, Osmond C, Phipps K, Clark PM (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension, and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67

    PubMed  CAS  Google Scholar 

  • Beal MF (1998) Mitochondrial dysfunction in neurodegenerative disorders. Biochem Biophys Acta 1366:211–223

    PubMed  CAS  Google Scholar 

  • Bell GI, Cox NJ, Lindner T et al. (1997) Genetics of NIDDM in the Mexican-Americans of Starr County, Texas: an update. Diabetes Rev 5:277–283

    Google Scholar 

  • Bell GI, Xiang K, Newman MV et al. (1991) Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc Natl Acad Sci USA 88:1484–1488

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96:11041–11048

    PubMed  CAS  Google Scholar 

  • Brüning JC, Michael MD, Winnay JN et al. (1998) A musclespecific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    PubMed  Google Scholar 

  • Brüning JC, Gautarn D, Burks DJ, Gilette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    PubMed  Google Scholar 

  • Bryan J, Aguilar-Bryan L (1999) Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K(+) channels. Biochim Biophys Acta 1461:285–303

    PubMed  CAS  Google Scholar 

  • Chevre JA, Hani EH, Boutin P et al. (1998) Mutation screening in 18 Caucasian families suggest the existence of other MODY genes. Diabetologia 41:1017–1023

    PubMed  CAS  Google Scholar 

  • Curtis SE, Michael MD, Crute BE, Keller SR, Lienhard GE (2000) Double knockout of IRS proteins reveals critical roles of IRS-4 and IRS-3 in the maintenance of glucose homeostasis. Diabetes [Suppl 1] 49:19

    Google Scholar 

  • De Fronzo RA (1997) Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 5:177–269

    Google Scholar 

  • Efrat S (1998) Prospects for gene therapy of insulin-dependent diabetes mellitus. Diabetologia 4I:1401–1409

    Google Scholar 

  • Elbein SC, Yount PA, Teng K, Hasstedt SJ (1998) Genomewide search for type 2 diabetes susceptibility genes in Caucasians: evidence for a recessive locus on chromosome 1. Diabetes [Suppl 1] 47:A15

    Google Scholar 

  • Eto K, Tsubamoto Y, Terauchi Y et al. (2000) Role of IRSA/2 and PI-3 kinase pathway in the regulation of P-cell mass and glucose stimulated insulin secretion. Diabetes [Suppl 1] 49:182

    Google Scholar 

  • Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20:1183–1197

    Google Scholar 

  • Fajans SS (1990) Scope and heterogeneous nature of maturityonset diabetes of the young (MODY). Diabetes Care 13:49–64

    PubMed  CAS  Google Scholar 

  • Fajans SS, Bel G, Bowden DW, Halter JB, Plonsky KS (1994) Maturity-onset diabetes of the young. Life Sei 55:413–422

    CAS  Google Scholar 

  • Fantin VR, Sparling JD, Siot JW, Keller SR, Lienhard GE, Lavan BE (1998) Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. J Biol Chem 273:10726–10732

    PubMed  CAS  Google Scholar 

  • Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A (2000) Pancreatic and duodenal homebox gene 1 induces expression of insulin genes in liver and ameliorates streptozotoein-induced hyperglycemia. Nat Med 6:568–572

    PubMed  CAS  Google Scholar 

  • Ferrannini E (1998) Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocrine Rev 19:477–490

    CAS  Google Scholar 

  • Flier JS, Hollenberg AN (1999) ADD-1 provides major new insight into the mechanism of insulin action. Proc Natl Acad Sci USA 96:14191–14192

    PubMed  CAS  Google Scholar 

  • Froguel P, Vaxillaire M, Sun F et al. (1992) Close linkage of glucokinase locus on chromosome 7p to early onset non insulin dependent diabetes mellitus. Nature 356:162–164

    PubMed  CAS  Google Scholar 

  • Froguel P, Vaxillaire M, Velho G (1997) Genetic and metabolic heterogeneity of maturity-onset diabetes of the young. Diabetes Rev 5:123–130

    Google Scholar 

  • Giannoukakis N, Rudert WA, Robbins PD, Trucco M (1999) Targeting auto immune diabetes with gene therapy. Diabetes 48:2107–2121

    PubMed  CAS  Google Scholar 

  • Glaser B, Chiti KC, Anker R et al. (1994) Familial hyperinsulinism maps to chromosome 11pI4-15.1,30 cM centromeric to the insulin gene. Nat Genet 7:185–188

    PubMed  CAS  Google Scholar 

  • Goldstein BI. Bittrier-Kowalczyk A, White MF, Harbeck M (2000) Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 275:4283–4289

    PubMed  CAS  Google Scholar 

  • Groop LC, Widen E, Ferrannini E (1993) Insulin resistance and insulin deficiency in the pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: errors of metabolism or methods? Diabetologia 36:1326–1331

    PubMed  CAS  Google Scholar 

  • Hara K, Yonezawa K, Sakaue H et al. (1994) 1-Phosphatidylinosito l 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci USA 91:7415–7419

    PubMed  CAS  Google Scholar 

  • Hanis CL, Boerwinkle E, Chakraborty R et al. (1996) A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 13:161–166

    PubMed  CAS  Google Scholar 

  • Häring HU, Mehnert H (1993) Pathogenesis of type 2 (noninsulin-dependent) diabetes mellitus: candidates for a signal transmitter defect causing insulin resistance of the secletal muscle. Diabetologia 36:176–182

    PubMed  Google Scholar 

  • Herman WH, Fajans SS, Ortiz H et al. (1994) Abnormal insulin secretion, not insulin resistance is the genetic or primary defect of MODY in the RW pedigree. Diabetes 43:40–46

    PubMed  CAS  Google Scholar 

  • Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF-and insulin-receptor signalling. Nature 379:560–564

    PubMed  CAS  Google Scholar 

  • Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ (1997) Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell surviva 1 by nerve growth factor. Proc Natl Acad Sci USA 94:12419–12424

    PubMed  CAS  Google Scholar 

  • Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN (1997) Mutation in hepatocyte nuclear factor-1 P gene (TGF2) associated with MODY. Nat Genet 17:384–385

    PubMed  CAS  Google Scholar 

  • Humphreys P, McCarthy M, Tuemilelito J et al. (1994) Chromosome 4q locus associated with insulin resistance in Pima Indians. Studies in three European NIDDM populations. Diabetes 43:800–804

    PubMed  CAS  Google Scholar 

  • Ilag LL, Tabaei BP, Herman W et al. (2000) Reduced pan creatic polypeptide response to hypoglycemia and amylin response to arginine in subjects with a mutation in the HNI74α/MODY1 gene. Diabetes 49:961–968

    PubMed  CAS  Google Scholar 

  • Kadowaki T (2000) Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 106:459–465

    PubMed  CAS  Google Scholar 

  • Kahn CR (1994) Insulin action, diabetogenes and the cause of type II diabetes. Diabetes 43:1066–1084

    PubMed  CAS  Google Scholar 

  • Kahn BB (1996) Lilly lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 45:1644–1654

    PubMed  CAS  Google Scholar 

  • Kalm CR, Vicent D, Doria A (1996) Genetics of non-insulin-dependent (type II) diabetes mellitus. Annu Rev Med 47:509–531

    Google Scholar 

  • Kausch C, Hamann A, Uphues I, Niendorf A, Müller-Wieland D, Joost HG, Algenstaedt P, Dreyer M, Rüdiger HW, Häring HU, Eckel J, Matthaei S (2000) Association of impaired phosphatidylinositol 3-kinase activity in GLUT1-containing vesicles with malinsertion of glucose transporters into the plasma membrane of fibroblasts from a patient with severe insulin resistance and clinical features of Werner syndrome. J Clin Endocrinol Metab 85:905–918

    PubMed  CAS  Google Scholar 

  • Kelley DE, Mandarino U (2000) Fuel selection in human skeletal muscle in insulin resistance. A reexamination. Diabetes 49:677–683

    PubMed  CAS  Google Scholar 

  • Kido Y, Burks DJ, Withers D et al. (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-l, and IRS-2. J Clin Invest 105:199–205

    PubMed  CAS  Google Scholar 

  • Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman G (2000) Mechanism of insulin resistance in A-ZIP/17-1 fatless mice. J Biol Chem 276:8456–8460

    Google Scholar 

  • Kolb H (1999) Pathophysiology of type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes [Suppl 3] 107:S88

    Google Scholar 

  • Kotzka J, Müller-Wieland D, Roth G, Kremer L, Munck M, Schurmann S, Knebel B, Krone W (2000) Sterol regulatory element binding proteins (SREBP)-1 and SREBP-2 are linked to the MAP-kinase cascade. J Lipid Res 41:99–108

    PubMed  CAS  Google Scholar 

  • Krützfeldt J, Katisch C, Volk A et al. (2000) Insulin signaling and action in cultured skeletal muscle cells from lean healthy humans with high and low insulin sensitivity. Diabetes 49:992–998

    PubMed  Google Scholar 

  • Kulkarni RN, Mining JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999a) Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    PubMed  CAS  Google Scholar 

  • Kulkarni RN, Winnay JN, Daniels M et al.(1999b) Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin luvest 104:R6975

    Google Scholar 

  • Lavan BE, Lane WS, Lienhard GE(1997a) The 60-kDa phos photyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 272:11439–11443

    PubMed  CAS  Google Scholar 

  • Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE(1997b) A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 272:21403–21407

    PubMed  CAS  Google Scholar 

  • Lindsay RS, Dabelea D, Rournan J, Hanson RL, Bennett PH, Knowler WC (2000) Type 2 diabetes and low birth weight. The role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 49:445–449

    PubMed  CAS  Google Scholar 

  • Liu SC, Wang Q, Lienhard GE, Keller RR (1999) Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 274:18093–18099

    PubMed  CAS  Google Scholar 

  • Maassen JA, Kadowaki T (1996) Maternally inherited diabetes and deafness: a new diabetes sub type. Diabetologia 39:375–382

    PubMed  CAS  Google Scholar 

  • MacFariane WM, O’Brien RE, Barnes PD et al. (2000) Sulfonylurea receptor 1 and Kir6.2 Expression in the novel human insulin-secretin cell line NES2Y. Diabetes 49:953–960

    Google Scholar 

  • Mahtani MM, Widen E, Lehto M et al. (1996) Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet 14:90–94

    PubMed  CAS  Google Scholar 

  • Martin BC, Warram JH, Krolewski AS, Bergmann RN, Soeldner JS, Kahn CR (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–929

    PubMed  CAS  Google Scholar 

  • Medici F, Hawa M, lanari A, Leslie RDG (1999) Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 42:146–150

    PubMed  CAS  Google Scholar 

  • Meyer M, Chudziak F, Schwanstecher C, Schwanstecher M, Panten U (1999) Structural requirements of sulphonylureas and analogues for interaction with sulphonylurea receptor subtypes. Br J Pharmacol 128:27–34

    PubMed  CAS  Google Scholar 

  • Montague CT, O’Rahilly S (2000) Perspectives in diabetes. The perils of portliness. Causes and consequences of visceral adiposity. Diabetes 49:883–888

    PubMed  CAS  Google Scholar 

  • Müller-Wieland D, Kotzka J, Knebel B, Krone W (1998) Metabolic syndrome and hypertension: pathophysiology and molecular basis of insulin resistance. Basic Res Cardiol 93:131–134

    PubMed  Google Scholar 

  • Ohan N, Bayaa M, Kumar P, Zhu L, Litt M (1998) A novel insulin receptor substrate protein, x1RS-u, potentiates insulin signaling: functional importance of its pleckstrin homology domain. Mol Endocrinol 12:1086–1098

    PubMed  CAS  Google Scholar 

  • Polonsky KS, Sturis J, Bell GI (1996) Non-insulin dependent diabetes mellitus — a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med 334:777–783

    PubMed  CAS  Google Scholar 

  • Raffel LJ, Robbins DC, Norris M et al. (1996) The GENNID study. A resource for mapping the genes that cause NIDDIA. Diabetes Care 19:864–872

    PubMed  CAS  Google Scholar 

  • Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR (1998) Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339: 953–959

    PubMed  CAS  Google Scholar 

  • Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E (1998) Determination of Gab I (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules. Mol Endocrinol 12:914–923

    PubMed  CAS  Google Scholar 

  • Rordorf-Nikolic T, Van Horn DJ, Chen D, White MF, Backer JM (1995) Regulation of phosphatidylinositol Y-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J Biol Chem 270:3662–3666

    PubMed  CAS  Google Scholar 

  • Rosen ED, Walkey CI, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    PubMed  CAS  Google Scholar 

  • Ross SA, Lienhard GE, Lavan BE (1998) Association of insulin receptor substrate 3 with SH2 domain-containing proteins in rat adipocytes. Biochem Biophys Res Commun 247:487–492

    PubMed  CAS  Google Scholar 

  • Roth G, Kotzka J, Kremer L, Lehr S, Lohaus C, Meyer HE, Krone W, Müller-Wieland D (2000) MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro. J Biol Chem 275: 33302–33307

    PubMed  CAS  Google Scholar 

  • Salim K, Bottomley MJ, Querflirth E et al. (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyro sine kinase. EMBO J 15:6241–6250

    PubMed  CAS  Google Scholar 

  • Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E (1996) Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem 271:5980–5983

    PubMed  CAS  Google Scholar 

  • Sawka-Verheile D, Baron V, Mothe I, Filloux C, White M, Van Obberghen E (1997) Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J Biol Chem 272:16414–16420

    Google Scholar 

  • Schopjans C, Auwerx J (2000) Thiazolidinediones: an update. Lancet 355:1008–1010

    Google Scholar 

  • Seino S (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channellreceptor assemblies. Annu Rev Physiol 621:337–362

    Google Scholar 

  • Seino S, Twanaga T, Nagashima K, Miki T (2000) Diverse roles of KAT P channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318

    PubMed  CAS  Google Scholar 

  • Skolnik EY, Lee CH, Batzer A et al.(1993a) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine phosphorylated IRSI and Shc: implications for insulin control of ras signalling. EMBO J 12:1929–1936

    PubMed  CAS  Google Scholar 

  • Smith-Hall J, Pons S, Patti ME et al. (1997) The 60 kDa insulin receptor substrate functions like an IRS protein (pp601RS3) in adipose cells. Biochemistry 36:8304–8310

    PubMed  CAS  Google Scholar 

  • Songyang Z, Shoelson SE, Chaudhuri M et al. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    PubMed  CAS  Google Scholar 

  • Steinke J, Soeldner JS (1977) Diabetes mellitus, 8th edn. McGraw-Hill, New York, pp 563–583

    Google Scholar 

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409: 307–312

    PubMed  CAS  Google Scholar 

  • Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997) Earlyonset type-11 diabete s mellitus (MODY4) linked to IPF I. Nature 384:455–458

    Google Scholar 

  • Stumvoll M, Wahl HG, Löblein K, Becker R, Machicao F, Jacob S, Häring H (2001) Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-ψ2-gene is associated with increased antilipolytic insulin sensitivity. Diabetes 50:876

    PubMed  CAS  Google Scholar 

  • Sun XJ, Rothenberg P, Kahn CR et al. (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    PubMed  CAS  Google Scholar 

  • Sun XJ, Crimmins DL, Myers MG Jr, Miralpeix M, White MF (1993) Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 13:7418–7428

    PubMed  CAS  Google Scholar 

  • Sun XJ, Wang LM, Zliang Y et al. (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377:173–177

    PubMed  CAS  Google Scholar 

  • Tanti JF, Gremeaux T, Obberghen E van, Le Marchand-Brustel Y (1994) Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057

    PubMed  CAS  Google Scholar 

  • Ueki K, Yamauchi Tamamemoto H et al. (2000) Restored insulin-sensitivity in IRS-I-deficient mice treated by adenovirus-mediated gene therapy. J Clin Invest 105:1437–1445

    PubMed  CAS  Google Scholar 

  • UKPDS Group (1998a) Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKIDS 33). Lancet 352:837–853

    Google Scholar 

  • UKPDS Group (1998b) Effect of intensive blood glucose control with metformin on complications in overweight patient s with type 2 diabetes (UKPDS 34). Lancet 352: 854–865

    Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 20:203–212

    Google Scholar 

  • Unger RH, Zliou YT, Orci L (1999) Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci USA 96:2327–2332

    PubMed  CAS  Google Scholar 

  • Valle T, Tuorniffieto J, Berginan RN et al. (1998) Mapping genes for NIDDM. Design of the Finland-United States Investigation of NIDDM Genetics (FUSION) Study. Diabetes Care 21:949–958

    PubMed  CAS  Google Scholar 

  • Walter U, Frantzke A, Sarukhan A et al. (2000) Monitoring gene expression of TNFR family members by beta-cells during development of autoimmune diabetes. Eur J ImmunoI 30: 1224–1232

    CAS  Google Scholar 

  • Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W (1996) Interaction between Gabl and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384:173–176

    PubMed  CAS  Google Scholar 

  • White MF (1995) The IRS-signalling system in insulin action. Diabetic Annual 9:71–89

    Google Scholar 

  • White MF, Maron R, Kahn CR (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186

    PubMed  CAS  Google Scholar 

  • White MF, Shoelson SE, Kcutmann H, Kahn CR (1988) A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. J Biol Chem 263:2969–2980

    PubMed  CAS  Google Scholar 

  • Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptormediated P-cell development and peripheral insulin signalling. Nat Genet 23:32

    PubMed  CAS  Google Scholar 

  • Wong FS, Janeway CA Jr (1999) Insulin-dependent diabetes mellitus and its animal models. Curr Opin Immunol 11:643–647

    PubMed  CAS  Google Scholar 

  • Yamagata K, Furuta H, Oda N et al. (1996a) Mutations in the hepatocyte factor-4a gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460

    PubMed  CAS  Google Scholar 

  • Yamagata K, Oda N, Kaisake P et al. (1996b) Mutations in the hepatocyte nuclear factor-la gene in maturity-onset diabetes of the young (MODY 3). Nature 384:455–458

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Tobe K, Tamemoto H et al. (1996) Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol 16:3074–3084

    PubMed  CAS  Google Scholar 

  • Yenush L, White MF (1997) The IRS-signalling system during insulin and cytokine action. Bioessays 19:491–500

    PubMed  CAS  Google Scholar 

  • Zhou YT, Wang ZW, Higa M, Newgard CB, Unger RH (1999) Reversing adipocyte differentiation: implications for treatment of obesity. Proc Natl Acad Sci USA 96:2391–2395

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller-Wieland, D., Häring, HU. (2001). Diabetes mellitus. In: Ganten, D., Ruckpaul, K., Janssen, O.E., Heufelder, A.E. (eds) Molekularmedizinische Grundlagen von Endokrinopathien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56858-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56858-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63216-7

  • Online ISBN: 978-3-642-56858-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics