Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 169 Accesses

Zusammenfassung

Erst Ende des 19. Jahrhunderts wurde zunehmend deutlich, dass es sich bei der Hypophyse nicht nur um eine „Nasenschleimdrüse“ handelt, sondern um ein Organ, das lebenswichtige, den Stoffwechsel des Organismus endokrin regulierende Substanzen ins Blut abgibt. Arbeiten zu Beginn des 20. Jahrhunderts zeigten die Bedeutung der Hypophyse für die Fortpflanzung und das Wachstum. Harvey Cushing konnte nachweisen, dass die nach ihm benannte Erkrankung auf eine Hypersekretion einer damals noch nicht identifizierten, endokrin wirksamen Substanz aus Hypophysentumoren zurückzuführen war. In den 30er Jahren wurde erstmals postuliert, dass der Hypothalamus als übergeordnete Struktur die Hypophysenfunktion reguliert; diese Hypothese wurde nach dem 2. Weltkrieg experimentell bestätigt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agarwal SK et al. (1997) Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet 6:1169–1175

    PubMed  CAS  Google Scholar 

  • Alexander JM et al. (1990) Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 86:336–340

    PubMed  CAS  Google Scholar 

  • Allaerts W et al. (1990) New perspectives in the function of pituitary folliculo-stellate cells. Mol Cell Endocrinol 71:73–81

    PubMed  CAS  Google Scholar 

  • Allaerts W et al. (1997) Heterogeneity of pituitary folliculo-stellate cells: implications for IL-6 production and accessory function in vitro. J Neuroendocrinol 9:43–53

    PubMed  CAS  Google Scholar 

  • Alvarez-Bolado G et al. (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates and morphological features. J Comp Neurol 355:237–295

    PubMed  CAS  Google Scholar 

  • Alvaro V et al. (1993) Invasive human pituitary tumors express a point-mutated a-protein kinase-C. J Clin Endocrinol Metab 77:1125–1129

    PubMed  CAS  Google Scholar 

  • Ambrosi B et al. (1991) Epidemiology of pituitary tumors. In: Faglia G et al. (eds) Pituitary adenom as: new trends in basic and clinical research. Elsevier, Amsterdam New York, S 159–168

    Google Scholar 

  • Arzt E et al. (1993) Interleukin involvement in anterior pituitary cell growth regulation: effects of interleukin-2 (IL-2) and IL-6. Endocrinology 132:459–467

    PubMed  CAS  Google Scholar 

  • Arzt E et al. (1999) Pathophysiological role of the cytokine network in the anterior pituitary gland. Front Endocrinol 20:71–95

    CAS  Google Scholar 

  • Asa SL et al. (1992) Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 131:2083–2089

    PubMed  CAS  Google Scholar 

  • Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19:798–827

    PubMed  CAS  Google Scholar 

  • Bach I et al. (1995) P-Lim, a Lim-homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-I. Proc Natl Acad Sci USA 92:2720–2724

    PubMed  CAS  Google Scholar 

  • Banerjee SK et al. (1997) Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis. Carcinogenesis 18:1155–1161

    PubMed  CAS  Google Scholar 

  • Barrett JC (1992) Molecular mechanisms of hormonal carcinogenesis. In: Li JJ, Nandi S, Li SA (eds) Hormonal carcinogenesis, vol 1. Springer, Berlin Heidelberg New York, pp 159–163

    Google Scholar 

  • Bates AS et al. (1997) Allelic deletion s in pituitary adenomas reflect aggressive biological activity and has potential value as a prognostic marker, J Clin Endocrinol Metab 82:818–824

    PubMed  CAS  Google Scholar 

  • Baum HB et al. (1996) Effects of physiologic growth hormone therapy on bone density and body composition in patient s with adult-onset growth hormone deficiency. A randomized, placebo-controlled trial. Ann Intern Med 125:883–890

    PubMed  CAS  Google Scholar 

  • Baum HBA et al. (1998) Effects of physiological growth hormone (GH) therapy on cognition and quality of life in patients with adult-onset GH deficiency. J Clin Endocrinol Metab 83:3184–3189

    PubMed  CAS  Google Scholar 

  • Berkman RA et al. (1993) Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91:153–159

    PubMed  CAS  Google Scholar 

  • Bertherat J et al. (1995) The cyclic adenosine 3′5′-monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol 9:777–783

    PubMed  CAS  Google Scholar 

  • Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17:64–102

    PubMed  CAS  Google Scholar 

  • Bevan JS et al. (1992) Dopamine agonists and pituitary shrinkage. Endocr Rev 13:220–240

    PubMed  CAS  Google Scholar 

  • Billestrup N et al. (1986) Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 83:6854–6857

    PubMed  CAS  Google Scholar 

  • Birman P et al. (1987) Epidermal growth factor binding sites, present in normal human and rat pituitaries, are absent in human pituitary adenomas. J Clin Endocrinol Metab 65:275–281

    PubMed  CAS  Google Scholar 

  • Boggild MD et al. (1994) Molecular genetic studies of sporadic pituitary tumours. J Clin Endocrinol Metab 78:387–392

    PubMed  CAS  Google Scholar 

  • Borgundvaag B et al. (1992) Dopamine receptor activation inhibits estrogen-stimulated transforming growth factor-a gene expression and growth in anterior pituitary but not in uterus. Endocrinology 130:3453–3458

    PubMed  CAS  Google Scholar 

  • Breder CD et al. (1992) Differential expression of somatostatin receptor subtypes in the brain. J Neurosci 12:3920–3934

    PubMed  CAS  Google Scholar 

  • Caccavelli L et al. (1994) Decreased expression of the two D2 dopamine receptor isoforms in bromocriptine-resistant prolactinomas. Neuroendocrinology 60:314–322

    PubMed  CAS  Google Scholar 

  • Cai WY et al. (1994) Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 78:89–93

    PubMed  CAS  Google Scholar 

  • Castrillo J-L et al. (1991) Function of the homeodomain protein GHFI in pituitary cell proliferation. Science 253:197–199

    PubMed  CAS  Google Scholar 

  • Castro MG (1999) Gene therapy strategies for the treatment of pituitary tumours. J Mol Endocrinol 22:9–18

    PubMed  CAS  Google Scholar 

  • Chaidarun SS et al. (1994) Role of growth factors and estrogen as modulators of growth, differentiation, and expression of gonadotropin subunit genes in primary cultured sheep pituitary cells. Endocrinology 134:935–944

    PubMed  CAS  Google Scholar 

  • Chandrasekharappa SC et al. (1997) Positional cloning of the gene for multiple endocine neoplasia-type 1. Science 276:404–407

    PubMed  CAS  Google Scholar 

  • Chrousos GP (1995) The hypothalamic-pituitary adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362

    PubMed  CAS  Google Scholar 

  • Clementi E et al. (1990) A new constitutively activating mutation in Gs protein α subunit — gsp oncogene is found in human pituitary tumours. Oncogene 5:1059–1061

    PubMed  CAS  Google Scholar 

  • Cote TE et al. (1986) D2 dopamine receptor-mediated inhibition of pro-opiomelanocortin synthesis in rat intermediate lobe. Abolition by pertussis toxin or activators of adenylate cydase. J Biol Chem 261:4555–4561

    PubMed  CAS  Google Scholar 

  • Couse JF et al. (1995) Disruption of the mouse estrogen receptor gene: resulting phenotypes and experimental findings. Biochem Soc Trans 23:929–935

    PubMed  CAS  Google Scholar 

  • Cryns VL et al. (1993) The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab 77:644–646

    PubMed  CAS  Google Scholar 

  • Daniel PM, Treip CS (1977) The pathology of the hypothalamus. J Clin Endocrinol Metab 6:3–19

    CAS  Google Scholar 

  • De Pina-Neto JM et al. (1997) Clinical-neurologic, cytogenetic and molecular aspects of the Prader-Willi and Angelman syndromes. Arq Neuropsiquiatr 55:199–208

    PubMed  Google Scholar 

  • Drolet DW et al. (1991) TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new dass of leucine zipper proteins. Genes Dev 5:1739–1753

    PubMed  CAS  Google Scholar 

  • Enmark E et al. (1997) Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82:4258–4265

    PubMed  CAS  Google Scholar 

  • Ezzat S et al. (1994) Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone-releasing hormone-producing bronchial carcinoid. J Clin Endocrinol Metab 78:555–560

    PubMed  CAS  Google Scholar 

  • Ezzat S et al. (1997) The c-erbB-2/neu protooncogene in human pituitary tumours. Clin Endocrinol (Oxf) 46:599–606

    CAS  Google Scholar 

  • Farnoud MR et al. (1994a) Interaction between normal and tumoural tissues at the boundary of human pituitary adenomas. Virchows Arch 424:75–82

    PubMed  CAS  Google Scholar 

  • Farnoud MR et al. (1994b) Immunhistochemical localization of different laminin isoforms in human normal and adenomatous anterior pitutary. Lab Invest 70:399–406

    PubMed  CAS  Google Scholar 

  • Farnoud MR et al. (1995) Fibronectin isoforms are differentially expressed in normal and adenomatous human anterior pituitaries. Int J Cancer 61:27–34

    PubMed  CAS  Google Scholar 

  • Farnoud MR et al. (1996) Adenomatous transformation of the human anterior pituitary is associated with alterations in integrin expression. Int J Cancer 67:45–53

    PubMed  CAS  Google Scholar 

  • Farrell WE, Clayton RN (1998) Molecular genetics of pituitary tumours. Trends Endocrinol Metab 9:20–26

    PubMed  CAS  Google Scholar 

  • Ferrara N et al. 1987 Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 84:5773–5777

    PubMed  CAS  Google Scholar 

  • Fofanova O et al. (1998) Compound heterozygous deletion of prop-1 gene in children with combined pituitary hormone deficiency. J Clin Endocrinol Metab 83:2601–2604

    PubMed  CAS  Google Scholar 

  • Pranklin DS et al. (1998) CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899–2911

    Google Scholar 

  • Friedman E et al. (1994) Normal structural dopamine type 2 receptor gene in prolactin-secreting and other pituitary tumors. J Clin Endocrinol Metab 78:568–574

    PubMed  CAS  Google Scholar 

  • Gage PJ et al. (1996) The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol Endocrinol 10:1570–1581

    PubMed  CAS  Google Scholar 

  • Gage PJ, Camper SA (1997) Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 6:457–464

    PubMed  CAS  Google Scholar 

  • Gicquel C et al. (1992) Monodonality of corticotroph macroadenomas in Cushing’s disease. J Clin Endocrinol Metab 75:472–475

    PubMed  CAS  Google Scholar 

  • Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321

    PubMed  CAS  Google Scholar 

  • Giraud S et al. (1998) Germ-line mutation analysis in patients with multiple endocrine neoplasia type 1 and related disorders. Am J Hum Genet 63:455–467

    PubMed  CAS  Google Scholar 

  • Giros B et al. (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926

    PubMed  CAS  Google Scholar 

  • Gittoes NJL et al. (1997) Thyroid hormone and estrogen receptor expression in normal pituitary and nonfunctioning tumors of the anterior pituitary gland. J Clin Endocrinol Metab 82:1960–1967

    PubMed  CAS  Google Scholar 

  • Gloddek J et al. (1999) Pituitary adenylate cyclase-activating polypeptide, interleukin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary folliculostellate cells. J Endocrinol 160:483–490

    PubMed  CAS  Google Scholar 

  • Godfrey P et al. (1993) GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet 4:227–232

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Lau K (1989) Pituitary follicular cells secrete both vascular endothelial growth factor and follistatin. Biochem Biophys Res Commun 165:292–298

    PubMed  CAS  Google Scholar 

  • Goya RG et al. (1998) Use of recombinant herpex simplex virus type 1 vectors for gene transfer into tumour and normal anterior pituitary cells. Mol Cell Endocrinol 139:199–207

    PubMed  CAS  Google Scholar 

  • Hardelin JP et al. (1995) A molecular approach to the pathophysiology of the X chromosome-linked Kallmann’s syndrome. Baillieres Clin Endocrinol Metab 9:489–507

    PubMed  CAS  Google Scholar 

  • Hartwell L, Kastan M (1994) Cell cycle and cancer. Science 266:1821–1828

    PubMed  CAS  Google Scholar 

  • Herman V et al. (1990) Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71:1427–1433

    PubMed  CAS  Google Scholar 

  • Hermesz E et al. (1996) Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 122:41–52

    PubMed  CAS  Google Scholar 

  • Horvath SE et al. (1990) Human pituitary corticotroph adenomas in vitro: morphologic and functional responses to corticotropin-releasing hormone and cortisol. Neuroen-docrinology 51:241–248

    CAS  Google Scholar 

  • Howard AD et al. (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977

    PubMed  CAS  Google Scholar 

  • Ikeda Y et al. (1995) The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol 9:478–486

    PubMed  CAS  Google Scholar 

  • Ingraham HA et al. (1994) The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 8:2302–2312

    PubMed  CAS  Google Scholar 

  • Jabbour HN et al. (1997) Pattern and localisation of expression of vascular endothelial growth factor and its receptor flt-1 in the ovine pituitary gland: expression is independent of hypothalamic control. Mol Cell Endocrinol 134:91–100

    PubMed  CAS  Google Scholar 

  • Jacks T et al. (1992) Effect of an Rb mutation in mouse. Nature 359:295–300

    PubMed  CAS  Google Scholar 

  • Jockenhövel F (1996) Männlicher Hypogonadismus. In: Allolio H, Schulte M (Hrsg) Praktische Endokrinologie. Urban & Schwarzenberg, München Wien Baltimore, S 367

    Google Scholar 

  • Jones TH et al. (1994) Production of bioactive and immunoreactive interleukin-6 (IL-6) and expression of IL-6 messenger ribonucleic acid by human pituitary adenomas. J Clin Endocrinol Metab 78:180–187

    PubMed  CAS  Google Scholar 

  • Karl M et al. (1996) Nelson’s syndrome associated with a somatic frameshift mutation in the glucocorticoid receptor gene. J Clin Endocrinol Metab 81:124–129

    PubMed  CAS  Google Scholar 

  • Kelly MA et al. (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19:103–113

    PubMed  CAS  Google Scholar 

  • Kendall SK et al. (1995) Targeted disruption of the pituitary glycoprotein hormone α-subunit produces hypogonadal and hypothyroid mice. Genes Dev 9:2007–2019

    PubMed  CAS  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistieal study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    PubMed  Google Scholar 

  • Kovacs K et al. (1994) Prolactin-producing pituitary adenoma in a male-to-female transsexual patient with protracted estrogen administration. A morphologic study. Arch Pathol Lab Med 118:562–565

    PubMed  CAS  Google Scholar 

  • Krieger DT et al. (1968) A comparative study of endocrine tests in hypothalamic disease. Circadian periodicity of plasma 11-0HCS and growth hormone response to insulin hypoglycemia and metyrapone responsiveness. J Clin Endocrinol Metab 28:1589–1598

    PubMed  CAS  Google Scholar 

  • Kukstas LA et al. (1991) Different expression of the two dopaminergic D2 receptors, D2415 and D2444, in two types of lactotroph each characterised by their response to dopamine, and modification of expression by sex steroids. Endocrinology 129:1101–1103

    PubMed  CAS  Google Scholar 

  • Landis CA et al. (1989) GTPase activating mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696

    PubMed  CAS  Google Scholar 

  • LeRiehe V et al. (1996) Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab 81:656–662

    PubMed  CAS  Google Scholar 

  • Levy A, Lightman SL (1993) The pathogenesis of pituitary adenomas. Clin Endocrinol (Oxf) 38:559–570

    CAS  Google Scholar 

  • Levy A et al. (1994) p53 Gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 41:809–814

    CAS  Google Scholar 

  • Levy L et al. (1993) Presence and characterization of the somatostatin precursor in normal human pituitaries and in growth hormone secreting adenomas. J Clin Endocrinol Metab 76:85–90

    PubMed  CAS  Google Scholar 

  • Li S et al. (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-I. Nature 347:528–533

    PubMed  CAS  Google Scholar 

  • Lin S et al. (1993) Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364:208–213

    PubMed  CAS  Google Scholar 

  • Lin S-C et al. (1994) Pituitary ontogeny of the snell dwarf mouse reveal Pit-l-independent and Pit-l-dependent origins of the thyrotrope. Development 120:515–522

    PubMed  CAS  Google Scholar 

  • Lloyd RV et al. (1992) Morphologic effects of hGRH d gene expression on the pituitary, liver, and pancreas of MMT-hGRH transgenic mice. An in situ hybridization analysis. Am J Pathol 141:895–906

    PubMed  CAS  Google Scholar 

  • Lubahn DB et al. (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11.262–11.266

    Google Scholar 

  • Lüdecke DK et al. (1980) In vitro secretion of ACTH, β-endorphin and β-lipotropin in Cushing’s disease and Nelsons syndrome. Horm Res 13:259–279

    PubMed  Google Scholar 

  • Lundblad JR, Roberts JL (1988) Regulation of proopiomela-nocortin gene expression in pituitary. Endocr Rev 9:135–158

    PubMed  CAS  Google Scholar 

  • Lyons J et al. (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659

    PubMed  CAS  Google Scholar 

  • Marin F et al. (1992) S-100 protein immunopositivity in human nontumorous hypophyses and pituitary adenomas. Endocr Pathol 3:28–38

    Google Scholar 

  • Marx SJ (1998) Multiple endocrine neoplasia type 1. In: Vogelstein B, Kinzier KW (eds) The genetic basis of human cancer. McGraw Hill, New York, pp 489–506

    Google Scholar 

  • Maya-Nunez G et al. (1998) Contiguous gene syndrome due to deletion of the first three exons of the Kallmann gene and complete deletion of the steroid sulphatase gene. Clin Endocrinol (Oxf). 48:713–718

    CAS  Google Scholar 

  • McAndrew J et al. (1995) Targeting of transforming growth factor-a expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 136:4479–4488

    PubMed  CAS  Google Scholar 

  • Michaud JL et al. (1998) Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12:3264–3275

    PubMed  CAS  Google Scholar 

  • Miller GM et al. (1995) Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab 80:1386–1392

    PubMed  CAS  Google Scholar 

  • Missale C et al. (1991) Epidermal growth factor induces the functional expression of dopamine receptors in the GH3 cell line. Endocrinology 128:13–20

    PubMed  CAS  Google Scholar 

  • Missale C et al. (1995) Nerve growth factor and bromocriptine: a sequential therapy for human bromocriptine-resistant prolactinomas. Br J Cancer 72:1397–1399

    PubMed  CAS  Google Scholar 

  • Missale C et al. (1996) Nerve growth factor controles proliferation and progression of human prolactinoma cell lines through an autocrine mechanism. Mol Endocrinol 10:272–285

    PubMed  CAS  Google Scholar 

  • Miyata A et al. (1989) Isolation of a novel 38 residue hypothalamic peptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    PubMed  CAS  Google Scholar 

  • Montmayeur J-P et al. (1993) Preferential coupling between dopamine D2 receptors and G-proteins. Mol Endocrinol 7:161–170

    PubMed  CAS  Google Scholar 

  • Morand I et al. (1996) Cell-to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells. Endocrinology 137:3356–3367

    PubMed  CAS  Google Scholar 

  • Moyer D et al. (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88

    Google Scholar 

  • Nakayama K et al. (1996) Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell 85:707–720

    PubMed  CAS  Google Scholar 

  • Nass R et al. (1995) Effect of growth hormone (hGH) replacement therapy on physical work capacity and cardiac and pulmonary function in patients with hGH deficiency aquired in adulthood. J Clin Endocrinol Metab 80:552–557

    PubMed  CAS  Google Scholar 

  • Nelson C et al. (1988) Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 239:1400–1405

    PubMed  CAS  Google Scholar 

  • Patel YC et al. (1993) Multiple gene transcripts of the somatostatin receptor SSTR2: tissue selective distribution and cAMP regulation. Biochem Biophys Res Commun 192:288–294

    PubMed  CAS  Google Scholar 

  • Pei L, Melmed S (1997) Isolation and characterization of a pituitary tumor-specific transforming gene. Mol Endocrinol 11:433–441

    PubMed  CAS  Google Scholar 

  • Pei L et al. (1994) H-ras mutations in human pituitary carcinoma metastasis. J Clin Endocrinol Metab 78:842–846

    PubMed  CAS  Google Scholar 

  • Pei L et al. (1995) Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than Rb. Cancer Res 55:1613–1616

    PubMed  CAS  Google Scholar 

  • Pfäffle RW et al. (1992) Mutation of the POU-specific domain of Pit-I and hypopituitarism without pituitary hypoplasia. Secience 257:1118–1121

    Google Scholar 

  • Plum F, Van Uitert R (1978) Nonendocrine diseases and disorders of the hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus, vol 56. Raven Press, New York, S 415–473

    Google Scholar 

  • Poulin G et al. (1997) NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 17:6673–6682

    PubMed  CAS  Google Scholar 

  • Puy LA, Asa SL (1996) The ontogeny of pit-1 expression in the human fetal pituitary gland. Neuroendocrinology 63:349–355

    PubMed  CAS  Google Scholar 

  • Radovick S et al. (1992) A mutation in the POU-homeodomain of Pit-I responsible for combined pituitary hormone deficiency. Science 257:1115–1118

    PubMed  CAS  Google Scholar 

  • Rawlings SR, Hezareh M (1996) Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: action on the anterior pituitary gland. Endocr Rev 17:4–29

    PubMed  CAS  Google Scholar 

  • Ray D, Melmed S (1997) Pituitary cytokine and growth factor expression and action. Endocr Rev 18:206–228

    PubMed  CAS  Google Scholar 

  • Renner U et al. (1993) Secretion of polypeptide growth factors by human nonfunctioning adenoma cells in culture. Neuroendocrinology 57:825–834

    PubMed  CAS  Google Scholar 

  • Renner U et al. (1994a) Effect of bromocriptine and SMS 201-995 on growth of human somatotrophic and nonfunctioning pituitary adenoma cells invitro. Eur J Endocrinol 130:80–91

    PubMed  CAS  Google Scholar 

  • Renner U et al. (1994b) Growth hormone (GH)-releasing peptide stimulation of GH release from human somatotroph adenoma cells: interaction with GH-releasing hormone, thyrotropin-releasing horrnone, and octreotide. J Clin Endocrinol Metab 78:1090–1096

    PubMed  CAS  Google Scholar 

  • Renner U et al. (1996) Autocrine and paracrine roles of polypeptide growth factors, cytokines and vasogenic substances in normal and tumorous pituitary function and growth: a review. Eur J Endocrinol 135:515–532

    PubMed  CAS  Google Scholar 

  • Renner U et al. (1998a) Regulation and role of intrapituitary IL-6 production by folliculostellate cells. Domest Anim Endocrinol 15:353–362

    PubMed  CAS  Google Scholar 

  • Renner U et al. (1998b) Heterogenous dopamine D2 receptor subtype messenger ribonucleic acid expression in clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 83:1368–1375

    PubMed  CAS  Google Scholar 

  • Riddoch G (1983) Clinical aspects of hypothalamic disease. In: Le Gros Clark WE, Beattie J, Riddoch G et al. (eds) The hypothalamus. Oliver & Boyd, Edinburgh, pp 101–130

    Google Scholar 

  • Rosenfeld MG (1991) POU-domain transcription factors: pou-er-ful developmental regulators. Genes Dev 5:897–907

    PubMed  CAS  Google Scholar 

  • Saiardi A, Borrelli E (1998) Absence of dopaminergic control of melanotrophs leads to Cushing’s-like syndrome in mice. Mol Endocrinol 12:1133–1139

    PubMed  CAS  Google Scholar 

  • Sawchenko PE et al. (1992) Co-localization of neuroactive substances in the endocrine hypothalamus. In: Ciba Foundation Functional anatomy of the neuroendocrine hypothalamus. Ciba Found Symp 168:16–42

    CAS  Google Scholar 

  • Schechter J et al. (1988) Morphological evidence for the presence of arteries in human prolactinomas. J Clin Endocrinol Metab 67:713–719

    PubMed  CAS  Google Scholar 

  • Schechter J et al. (1991) Changes in basic fibroblast growth factor coineident with estradiol-induced hyperplasia of the anterior pituitaries of Fischer 344 and Sprague-Dawley rats. Endocrinology 129:2400–2408

    PubMed  CAS  Google Scholar 

  • Schechter JE et al. (1993) Development of the vasculature of the anterior pituitary: ontogeny of basic fibroblast growth factor. Dev Dyn 197:81–93

    PubMed  CAS  Google Scholar 

  • Scheithauer BW (1990) The hypothalamus and neurohypophysis. In: Kovacs K, Asa SL (eds) Functional endocrine pathology. Blackwell Seientific, Boston, pp 170–244

    Google Scholar 

  • Scheithauer BW et al. (1983) The pituitary gland in untreated Addison’s disease. A histologic and imrnuncytologic study of 18 adenohypophyses. Arch Pathol Lab Med 107:484–487

    PubMed  CAS  Google Scholar 

  • Schiemann U et al. (1997) Analysis of protein kinase C-alpha mutation in human pituitary tumours. J Endocrinol 153:131–137

    PubMed  CAS  Google Scholar 

  • Schoneman MD et al. (1995) Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 9:3122–3135

    Google Scholar 

  • Schulte HM et aI. (1991) Clonal composition of pituitary adenomas in patients with Cushing’s disease: determination by X-chromosome inactivation analysis. J Clin Endocrinol Metab 73:1302–1308

    PubMed  CAS  Google Scholar 

  • Scully KM et al. (1997) Role of estrogen receptor-α in the anterior pituitary gland. Mol Endocrinol 11:674–681

    PubMed  CAS  Google Scholar 

  • Sheng HZ et al. (1997) Multistep control of pituitary organogenesis. Science 278:1809–1812

    PubMed  CAS  Google Scholar 

  • Shimon I et al. (1997) Somatostatin receptor subtype specificity in human fetal pituitary cultures. J Clin Invest 99:789–798

    PubMed  CAS  Google Scholar 

  • Smith EP et al. (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061

    PubMed  CAS  Google Scholar 

  • Smith RG et al. (1997) Peptidomimetic regulation of growth hormone secretion. Endocr Rev 18:621–645

    PubMed  CAS  Google Scholar 

  • Sornson MW et al. (1996) Pituitary lineage determination by the prophet of Pit-l homeodomain factor defective in Ames dwarfism. Nature 384:327–333

    PubMed  CAS  Google Scholar 

  • Spangelo BL, Gorospe WC (1995) Role of cytokines in the neuroendocrine-immune system axis. Front Neuroendocrinol 16:1–22

    PubMed  CAS  Google Scholar 

  • Strom TM et al. (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–2028

    PubMed  CAS  Google Scholar 

  • Styne D (1997) Puperty. In: Greenspan F, Strewler GJ (eds) Basic and clinical endocrinology, 5th edn. Appleton & Lange, Stanford, p 533

    Google Scholar 

  • Swaab DF et al. (1993) Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol 187:317–330

    PubMed  CAS  Google Scholar 

  • Takeuchi S et al. (1998) Mutation and expression analysis of the cyclin-dependent kinase inhibitor gene p27tKipl in pituitary tumors. J Endocrinol 157:337–341

    PubMed  CAS  Google Scholar 

  • Takino H et al. (1995) Purine binding factor (nm23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrinol Metab 80:1733–1738

    PubMed  CAS  Google Scholar 

  • Tanaka C et al. (1997) Infrequent mutations of p27Kipi gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab 82:3141–3147

    PubMed  CAS  Google Scholar 

  • Tapar K et al. (1993) Pituitary adenomas: current concepts in classification, histopathology, and molecular biology. Endocrinologist 3:39–57

    Google Scholar 

  • Tatsumi K et al. (1992) Cretinism with combined hormone deficiency caused by a mutation in the pit-1 gene. Nat Genet 1:56–58

    PubMed  CAS  Google Scholar 

  • Theill LE, Karin M (1993) Transcriptional control of GH expression and anterior pituitary development. Endocr Rev 14:670–689

    PubMed  CAS  Google Scholar 

  • Therrien M, Drouin J (1993) Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opio-melanocortin gene. Mol Cell Biol 17:2342–2353

    Google Scholar 

  • Timpl P et al. (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    PubMed  CAS  Google Scholar 

  • Tordjman K et al. (1993) Gs α-gene in nonfunctioning pituitary tumours. J Clin Endocrinol Metab 77:765–769

    PubMed  CAS  Google Scholar 

  • Tremblay JJ et al. (1998) The pan-pituitary activator of transcription, Ptxl (pituitary homeobox 1) acts in synergy with SF-l and Pit-l and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 12:428–441

    PubMed  CAS  Google Scholar 

  • Williamson EA et al. (1994) Gsα and Gi2α mutations in clinically non-functioning pituitary tumours. Clin Endocrinol (Oxf) 41:815–820

    CAS  Google Scholar 

  • Williamson EA et al. (1995) G protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas Eur J Clin Invest 25:128–131

    PubMed  CAS  Google Scholar 

  • Woloschak M et al. (1996) Frequent loss of the p16INK4a gene product in human pituitary tumors. Cancer Res 56:2493–2496

    PubMed  CAS  Google Scholar 

  • Wotjak CT et al. (1996) Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: a novel mechanism of regulating adrenocorticotropic hormone secretion? J Neurosci 16:7725–7732

    PubMed  CAS  Google Scholar 

  • Wu W et al. (1998) Mutations in PROPI cause familial combined pituitary hormone deficiency. Nat Genet 18:147–149

    PubMed  CAS  Google Scholar 

  • Yano H et al. (1998) Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-immun-endocrine modulation of pituitary development. Mol Endocrinol 12:1708–1720

    PubMed  CAS  Google Scholar 

  • Zhang X et al. (1999) Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84:761–767

    PubMed  CAS  Google Scholar 

  • Zhou A et al. (1993) The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing. J Biol Chem 268:1763–1769

    PubMed  CAS  Google Scholar 

  • Zhu J et al. (1994) Human pituitary adenomas show no loss of heterozygosity at the retinoblastome gene locus. J Clin Endocrinol Metab 78:922–927

    PubMed  CAS  Google Scholar 

  • Zimering MB et al. (1993) Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: relation to pituitary tumor. J Clin Endocrinol Metab 76:1182–1187

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Renner, U., Schaaf, L., Stalla, G.K. (2001). Hypothalamische und hypophysäre Erkrankungen. In: Ganten, D., Ruckpaul, K., Janssen, O.E., Heufelder, A.E. (eds) Molekularmedizinische Grundlagen von Endokrinopathien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56858-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56858-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63216-7

  • Online ISBN: 978-3-642-56858-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics