Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 165 Accesses

Zusammenfassung

Es gibt 4 gut charakterisierte Erkrankungen, die durch einen renalen Phosphatverlust und eine Hypophosphatämie bedingt sind:

  • die X-chromosomal dominante Hypophosphatämie (XLH),

  • die autosomal-dominante hypophosphatämische Rachitis (ADHR),

  • die hereditäre hypophosphatämische Rachitis mit Hyperkalzurie (HHRH) und

  • die onkogene hypophosphatämische Osteomalazie (OHO). Die 3 zuerst genannten Erkrankungen werden monogen vererbt, die vierte ist erworben. Alle diese Erkrankungen führen zur Entwicklung einer Rachitis und/oder Osteomalazie. Die Häufigkeit der Hypophosphatämien wird insgesamt mit etwa 1:20000 angegeben und ist in den hoch entwickelten Industrieländern, in denen Vitamin D und Kalzium ausreichend in der Nahrung vorhanden sind, eine relativ häufige Ursache der Rachitis. Obwohl allen 4 Erkrankungen der renale Phosphatverlust gemeinsam ist, bestehen Unterschiede in der klinischen Ausprägung, im Vitamin-D-Metabolismus und der Antwort auf eine Phosphatsubstitution, die sich auch in der medikamentösen Behandlung niederschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Albright F, Butler AM, Bloomberg E (1937) Rickets resistent to vitamin D therapy. Am J Dis Child 54:529–547

    Google Scholar 

  • Alon U, Chan JC (1984) Effects of parathyroid hormone and 1,25-dihydroxyvitamin DJ on tubular handling of phosphate in hypophosphatemic rickets. J Clin Endocrinol Metab 58:671–675

    PubMed  CAS  Google Scholar 

  • Alon U, Donaldson DL, Hellerstein S et al. (1992) Metabolic and histologic investigation of the nature of nephrocalcinosis in children with hypophosphatemic rickets and in the Hyp mouse. J Pediatr 120:899–905

    PubMed  CAS  Google Scholar 

  • Balsan S, Tieder M (1990) Linear growth in patients with hypophosphatemic vitamin D-resistant rickets: influence of treatment regimen and parental height. J Pediatr 116:365–371

    PubMed  CAS  Google Scholar 

  • Beck L, Soumounou Y, Martel J et al. (1997) Pex/PEX tissue distribution and evidence for a deletion in the 3’ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest 99:1200–1209

    PubMed  CAS  Google Scholar 

  • Beck L, Karaplis AC, Amizuka N et al. (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercaleiuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377

    PubMed  CAS  Google Scholar 

  • Berndt Tl, Knox FG (1992) Renal regulation of phosphate excretion. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Raven Press, New York, pp 2511–2532

    Google Scholar 

  • Berndt M, Ehrich JH, Lazovic D et aI. (1996) Clinical course of hypophosphatemic rickets in 23 adults. Clin Nephrol 45:33–41

    PubMed  CAS  Google Scholar 

  • Berner W, Kinne R, Murer H (1976) Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J 160:467–474

    PubMed  CAS  Google Scholar 

  • Besser FS (1976) Linear sebaceous naevi with convulsions and mental retardation (Feuerstein-Mims’ syndrome), vitamin-D-resistant rickets. Proc R Soc Med 69:518–520

    PubMed  CAS  Google Scholar 

  • Bettinelli A, Bianchi ML, Mazzucchi E et al. (1991) Acute effects of caleitriol and phosphate salts on mineral metabolism in children with hypophosphatemic rickets. J Pediatr 118:372–376

    PubMed  CAS  Google Scholar 

  • Bianchine JW, Stambler AA, Harrison HE (1971) Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser 7:287–295

    PubMed  CAS  Google Scholar 

  • Biber J, Custer M, Werner A et al. (1993) Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. 11. Localization by immunohistochemistry. Pflugers Arch 424:210–215

    PubMed  CAS  Google Scholar 

  • Bolino A, Devoto M, Enia G et al. (1993) Genetic mapping in the Xp11.2 region of a new form of X-linked hypophosphatemic rickets. Eur J Hum Genet 1:269–279

    PubMed  CAS  Google Scholar 

  • Bonjour JP, Caverzasio J (1984) Phosphate transport in the kidney. Rev Physiol Biochem Pharmacol 100:161–214

    PubMed  CAS  Google Scholar 

  • Busch AE, Schuster A, Waldegger S et al. (1996) Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopusoocytes permeable for organic and inorganic anions. Proc Natl Acad Sci USA 93:5347–5351

    PubMed  CAS  Google Scholar 

  • Cai Q, Hodgson SF, Kao PC et al. (1994) Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med 330:1645–1649

    PubMed  CAS  Google Scholar 

  • Carey DE, Drezner MK, Hamdan JA et al. (1986) Hypophosphatemic rickets/osteomalacia in linear sebaceous nevus syndrome: a variant of tumor-induced osteomalacia. J Pediatr 109:994–1000

    PubMed  CAS  Google Scholar 

  • Carpenter TO (1997) New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr Clin North Am 44:443–466

    PubMed  CAS  Google Scholar 

  • Carpenter TO, Keller M, Schwartz D et al. (1996) 24,25 dihydroxyvitamin D supplementation corrects hyperparathyroidism and improves skeletal abnormalities in X-linked hypophosphatemic rickets — a clinical research center study. J Clin Endocrinol Metab 81:2381–2388

    PubMed  CAS  Google Scholar 

  • Caverzasio J, Bonjour JP (1992) Resistance to parathyroid hormone-induced inhibition of inorganic phosphate transport in opossum kidney cells cultured in low inorganic phosphate medium. J Endocrinol 134:361–368

    PubMed  CAS  Google Scholar 

  • Chalew SA, Lovchik JC, Brown CM et al. (1996) Hypophosphatemia induced in mice by transplantation of a tumor-derived cell line from a patient with oncogenic rickets. J Pediatr Endocrinol Metab 9:593–597

    PubMed  CAS  Google Scholar 

  • Chen C, Carpenter T, Steg N et al. (1989) Hypercalciuric hypophosphatemic rickets, mineral balance, bone histomorphometry, and therapeutic implications of hypercalciuria. Pediatrics 84:276–280

    PubMed  CAS  Google Scholar 

  • Chong SS, Kristjansson K, Zoghbi HY et al. (1993) Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23. Genomics 18:355–359

    PubMed  CAS  Google Scholar 

  • Collins FS (1995) Positional cloning moves from perditional to traditional. Nat Genet 9:347–350

    PubMed  CAS  Google Scholar 

  • Custer M, Meier F, Schlatter E et al. (1993) Localization of NaPi-1, a Na-Pi cotransporter, in rabbit kidney proximal tubules. I. mRNA localization by reverse transcriptionl polymerase chain reaction. Ptlugers Arch 424:203–209

    CAS  Google Scholar 

  • D’Adarnio L, Shipp MA, Masteller EL et al. (1989) Organization of the gene encoding common acute lymphoblastic leukemia antigen (neutral endopeptidase 24.11): multiple miniexons and separate 5’ untranslated regions. Proc Natl Acad Sci USA 86:7103–7107

    Google Scholar 

  • Danisi G, Murer H (1991) Inorganic phoshate absorption in small intestine. In: Field M, Frizzel RA (eds) Handbook of physiology — The gastrointestinal system IV. Oxford University Press, Oxford, pp 323–336

    Google Scholar 

  • David L, Pesso JL, Cochat P et al. (1987) Scriver type autosomal hypophosphatemic rachitis: a family case. Pediatric 42:563–568

    CAS  Google Scholar 

  • David K, Revesz T, Kratimenos G et al. (1996) Oncogenic osteomalacia assoeiated with a meningeal phosphaturic mesenchymal tumor. Case report. J Neurosurg 84:288–292

    PubMed  CAS  Google Scholar 

  • Davidai GA, Nesbitt T, Drezner MK (1991) Variable phosphate-mediated regulation of vitamin D metabolism in the murine hypophosphatemic rachitic/osteomalaeic disorder s. Endocrinology 128:1270–1276

    PubMed  CAS  Google Scholar 

  • DiMattia GE, Varghese R, Wagner GF (1998) Molecular cloning and characterization of stanniocalcin-related protein. Mol Cell Endocrinol 146:137–140

    PubMed  CAS  Google Scholar 

  • Dixon PH, Christie PT, Wooding C et al. (1998) Mutational analysis of PHEX gene in X-linked hypophosphatemia. J Clin Endocrinol Metab 83:3615–3623

    PubMed  CAS  Google Scholar 

  • Drezner MK (1993) Tumor-associated rickets and osteomalada. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Raven Press, New York, pp 282–288

    Google Scholar 

  • Du L, Desbarats M, Viel J et al. (1996) cDNA cloning of the murine pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics 36:22–28

    PubMed  CAS  Google Scholar 

  • Ecarot-Charrier B, Glorieux FH, Travers R et al. (1988) Defective bone formation by transplanted Hyp mouse bone cells into normal mice. Endocrinology 123:768–773

    PubMed  CAS  Google Scholar 

  • Ecarot B, Glorieux FH, Desbarats M et al. (1995) Effect of 1,25-dihydroxyvitamin D3 treatment on bone formation by transplanted cells from normal and X-linked hypophosphatemic mice. J Bone Miner Res 10:424–431

    PubMed  CAS  Google Scholar 

  • Econs MJ, Drezner MK (1994) Tumor-induced osteomalacia — unveiling a new hormone. N Engl J Med 330:1679–1681

    PubMed  CAS  Google Scholar 

  • Econs MJ, McEnery PT (1997) Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 82:674–681

    PubMed  CAS  Google Scholar 

  • Econs MJ, Strom TM (1999) The molecular basis of hypophosphatemic rickets. In: Handwerger S (ed) Molecular and cellular basis of pediatric endocrinology. Humana Press, Totowa, NJ, pp 39–55

    Google Scholar 

  • Econs MJ, Feussner JR, Samsa GP et al. (1991) X-linked hypophosphatemic rickets without “rickets”. Skeletal Radiol 20:109–114

    PubMed  CAS  Google Scholar 

  • Econs MJ, Rowe PSN, Francis F et al. (1994) Fine structure mapping of the human X-linked hypophosphatemic rickets gene locus. J Clin Endocrinol Metab 79:1351–1354

    PubMed  CAS  Google Scholar 

  • Econs MJ, Samsa GP, Monger M et al. (1994) X-linked hypophosphatemic rickets: a disease often unknown to affected patients. Bone Miner 24:17–24

    PubMed  CAS  Google Scholar 

  • Eicher EM, Southard JL, Scriver CR et al. (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sei USA 73:4667–4671

    CAS  Google Scholar 

  • Emoto N, Yanagisawa M (1995) Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem 270:15262–15268

    PubMed  CAS  Google Scholar 

  • Feild JA, Zhang L, Brun KA et al. (1999) Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Bioehern Biophys Res Commun 258:578–582

    CAS  Google Scholar 

  • Filisetti D, Ostermann G, Bredow M von et al. (1999) Nonrandom distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. Eur J Hum Genet 7:615–619

    PubMed  CAS  Google Scholar 

  • Francis F, Strom TM, Hennig S et al. (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–586

    PubMed  CAS  Google Scholar 

  • Friedman NE, Lobaugh B, Drezner MK (1993) Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. J Clin Endocrinol Metab 76:839–844

    PubMed  CAS  Google Scholar 

  • Friedman PA, Coutermarsh BA, Kennedy SM et al. (1996) Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein kinase A and protein kinase C. Endocrinology 137:13–20

    PubMed  CAS  Google Scholar 

  • Frymoyer PA, Scheinman SJ, Dunharn PB et al. (1991) X-linked recessive nephrolithiasis with renal failure. N Engl J Med 325:681–686

    PubMed  CAS  Google Scholar 

  • Gazit D, Tieder M, Liberman UA et al. (1991) Osteomalacia in hereditary hypophosphatemic rickets with hypercalciuria: a correlative clinical-histomorphornetric study. J Clin Endo crinol Metab 72:229–235

    CAS  Google Scholar 

  • Giasson SD, Brunette MG, Danan G et al. (1977) Micropuncture study of renal phosphorus transport in hypophosphatemic vitamin D resistant rickets mice. Pflugers Arch 371:33–38

    PubMed  CAS  Google Scholar 

  • Glorieux FH, Marie PJ, Pettifor JM et al. (1980) Bone response to phosphate salts, ergo calciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med 303:1023–1031

    PubMed  CAS  Google Scholar 

  • Goldblum JR, Headington JT (1993) Hypophosphatemic vitamin D-resistant rickets and multiple spindie and epithelioid nevi associated with linear nevus sebaceus syndrome. J Am Acad Dermatol 29:109–111

    PubMed  CAS  Google Scholar 

  • Goodyer PR, Kronick JB, Jequier S et al. (1987) Nephrocalcinosis and its relationship to treatment of hereditary rickets. J Pediatr 111:700–704

    PubMed  CAS  Google Scholar 

  • Graham JB, MeFalls VW, Winters RW (1959) Familial hypophosphatemia with vitamin D-resitent rickets. Am J Hum Genet 11:311–332

    PubMed  CAS  Google Scholar 

  • Gray RW, Napoli JL (1983) Dietary phosphate deprivation increases 1,25-dihyroxyvitamin D3 synthesis in rat kidney in vitro. J Biol Chem 258:1152–1155

    PubMed  CAS  Google Scholar 

  • Greenberg BR, Winters RW, Graham JB (1960) The normal ranges of serum inorganic phosphorus and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. J Clin Endocrinol Metab 20:364–379

    PubMed  CAS  Google Scholar 

  • Greene WB, Kahler SG (1985) Hypophosphatemie rickets: still misdiagnosed and inadequately treated. South Med J 78:1179–1184

    PubMed  CAS  Google Scholar 

  • Grieff M, Mumm S, Waeltz P et al. (1997) Expression and cloning of the human X-linked hypophosphatemia gene cDNA. Biochem Biophys Res Commun 231:635–639

    PubMed  CAS  Google Scholar 

  • Haddad M, Roder S, Olsen HS et al. (1996) Immunocyto-chemical localization of stanniocalcin cells in the rat kidney. Endocrinology 137:2113–2117

    PubMed  CAS  Google Scholar 

  • Hanna JD, Niimi K, Chan JC (1991) X-linked hypophosphatemia. Genetic and clinical correlates. Am J Dis Child 145:865–870

    PubMed  CAS  Google Scholar 

  • Haramati A, Haas JA, Knox FG (1983) Adaptation of deep and superficial nephrons to changes in dietary phosphate intake. Am J Physiol 244:F265–F269

    PubMed  CAS  Google Scholar 

  • Haramati A, Haas JA, Knox FG (1984) Nephron heterogeneity of phosphate reabsorption: effect of parathyroid hormone. Am J Physiol 246:FI55–FI58

    Google Scholar 

  • Hardy DC, Murphy WA, Siegel BA et al. (1989) X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology 171:403–414

    PubMed  CAS  Google Scholar 

  • HarreIl RM, Lyles KW, Harrelson JM et al. (1985) Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J Clin Invest 75:1858–1868

    Google Scholar 

  • Harrison HE, Harrison HC (1979) Rickets and osteomalacia: anonymous disorders of calcium and phosphate metabolism in childhood and adolescence. Saunders, Philadelphia, p 141

    Google Scholar 

  • Holm IA, Huang X, Kunkel LM (1997) Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet 60:790–797

    PubMed  CAS  Google Scholar 

  • Hopkins T, Howard JE, Eisenberg H (1952) Ultrafiltration studies on calcium and phosphorus in human serum. Bull Johns Hopkins Hosp 91:1–21

    PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Miller DG, Zhang W et al. (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91:7071–7075

    PubMed  CAS  Google Scholar 

  • Kawashima H, Kurokawa K (1986) Metabolism and sites of action of vitamin D in the kidney. Kidney Int 29:98–107

    PubMed  CAS  Google Scholar 

  • Kempson SA, Lotseher M, Kaissling B et al. (1995) Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 268:F784–F791

    PubMed  CAS  Google Scholar 

  • Kikuchi K, Ghishan FK (1987) Phosphate transport by basolateral plasma membranes of human small intestine. Gastroenterology 93:106–113

    PubMed  CAS  Google Scholar 

  • Knox FG, Osswald H, Marehand GR et al. (1977) Phosphate transport along the nephron. Am J Physiol 233:F261–F268

    PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res 15:8125–8148

    PubMed  CAS  Google Scholar 

  • Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115:887–903

    PubMed  CAS  Google Scholar 

  • Kruse K, Kracht U, Gopfert G (1982) Renal threshold phosphate concentration (TmP04/GFR). Arch Dis Child 57:217–223

    PubMed  CAS  Google Scholar 

  • Kumar R, Haugen JD, Wieben ED et al. (1995) Inhibitors of renal epithelial phosphate transport in tumor-induced osteomalacia and uremia. Proc Assoc Am Physicians 107:296–305

    PubMed  CAS  Google Scholar 

  • Lajeunesse D, Meyer RA Ir, Hamel L (1996) Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse. Kidney Int 50:1531–1538

    PubMed  CAS  Google Scholar 

  • Larmas M, Hietala EL, Simila S et al. (1991) Oral manifestations of familial hypophosphatemic rickets after phosphate supplement therapy: a review of the literature and report of case. ASDC J Dent Child 58:328–334

    PubMed  CAS  Google Scholar 

  • Lee DB, Walling MW, Brautbar N (1986) Intestinal phosphate absorption: influence of vitamin D and non-vitamin D factors. Am J Physiol 250:G369–G373

    PubMed  CAS  Google Scholar 

  • Lee S, Zambas ED, Marsh WL et al. (1991) Molecular cloning and primary structure of Keil blood group protein. Proc Natl Acad Sci USA 88:6353–6357

    PubMed  CAS  Google Scholar 

  • Leicht E, Biro G, Langer HJ (1990) Tumor-induced osteomalacia: pre-and postoperative biochemical findings. Horm Metab Res 22:640–643

    PubMed  CAS  Google Scholar 

  • Lipman ML, Panda D, Bennett HP et al. (1998) Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J Biol Chem 273:13.729–13.737

    Google Scholar 

  • Lloyd SE, Pearce SH, Fisher SE et al. (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    PubMed  CAS  Google Scholar 

  • Lorenz B, Francis F, Gempel K et al. (1998) Spermine defcciency in Gy mice caused by deletion of the spermine synthase gene. Hum Mol Genet 7:541–547

    PubMed  CAS  Google Scholar 

  • Lu M, Wagner GF, Renfro JL (1994) Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol 267:R1356–R1362

    PubMed  CAS  Google Scholar 

  • Lyon MF, Scriver CR, Baker LRI et al. (1986) The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci USA 83:4899–4903

    PubMed  CAS  Google Scholar 

  • Mächler M, Frey D, Gal A et al. (1986) X-linked dominant hypophosphatemia is closely linked to DNA markers DXS41 and DXS43 at Xp22. Hum Genet 73:271–275

    PubMed  Google Scholar 

  • Malmstrom K, Murer H (1987) Parathyroid hormone regulates phosphate tran sport in OK cells via an irreversible inactivation of a membrane protein. FEBS Lett 216:257–260

    PubMed  CAS  Google Scholar 

  • Marie PJ, Travers R, Glorieux FH (1981) Healing of rickets with phosphate supplementation in the hypophosphatemic male mouse. J Clin Invest 67:911–914

    PubMed  CAS  Google Scholar 

  • Marie PJ, Travers R, Glorieux FH (1982) Healing of bone lesions with 1,25-dihydroxyvitamin D3 in the young X-linked hypophosphatemic male mouse. Endocrinology 111:904–911

    PubMed  CAS  Google Scholar 

  • Markowitz M, Rotkin L, Rosen JF (1981) Circadian rhythms of blood minerals in humans. Science 213:672–674

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Fontaine O, Rasmussen H (1980) Effect of 1,25-dihydroxyvitamin D3 on phosphate uptake into chick intestinal brush border membrane vesicles. Biochim Biophys Acta 599:13–23

    PubMed  CAS  Google Scholar 

  • McGuire MH, Merenda JT, Etzkorn JR et al. (1989) Oncogenic osteomalacia. A case report. Clin Orthop 244:305–308

    PubMed  Google Scholar 

  • Meyer RA Jr, Meyer MH, Gray RW (1989) Parabios is suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J Bone Miner Res 4:493–500

    PubMed  Google Scholar 

  • Meyer RA Jr, Tenenhouse HS, Meyer MH et al. (1989) The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. J Bone Miner Res 4:523–532

    PubMed  CAS  Google Scholar 

  • Miyauchi A, Fukase M, Tsutsumi M et al. (1988) Hemangiopericytoma-induced osteomalacia: tumor transplantation in nude mice causes hypophosphatemia and tumor extracts inhibit renal 25-hydroxyvitamin D 1-hydroxylase activity. J Clin Endocrinol Metab 67:46–53

    PubMed  CAS  Google Scholar 

  • Mizgala CL, Quamme GA (1985) Renal handling of phosphate. Physiol Rev 65:431–466

    PubMed  CAS  Google Scholar 

  • Morel F (1981) Sites of hormone action in the mammalian nephron. Am J Physiol 240:FI59–FI64

    Google Scholar 

  • Morgan JM, Hawley WL, Chenoweth AI et al. (1974) Renal transplantation in hypophosphatemia with vitamin D-resistant rickets. Arch Intern Med 134:549–552

    PubMed  CAS  Google Scholar 

  • Muhlbauer RC, Bonjour JP, Fleisch H (1982) Abnormal tubular Pi adaptation to dietary Pi restriction and decreased calcium reabsorption in X-linked hypophosphatemic (HYP) mice. Adv Exp Med Biol 151:71–75

    PubMed  CAS  Google Scholar 

  • Murer H, Biber J (1996) Molecular mechanisms of renal apical Na/phosphate cotransport. Annu Rev Physiol 58:607–618

    PubMed  CAS  Google Scholar 

  • Murer H, Biber J (1997) A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and of its regulation. Pflugers Arch 433:379–389

    PubMed  CAS  Google Scholar 

  • Murer H, Burckhardt G (1983) Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev Physiol Biochem Pharmacol 96:1–51

    PubMed  CAS  Google Scholar 

  • Murer H, Hildmann B (1981) Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium. Am J Physiol 240:G409–G416

    PubMed  CAS  Google Scholar 

  • Murer H, Werner A, Reshkin S et al. (1991) Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate. Am J Physiol 260:C885–C899

    PubMed  CAS  Google Scholar 

  • Nelson AE, Robinson BG, Mason RS (1997) Oncogenic osteomalacia: is there a new phosphate regulating hormone? Clin Endocrinol (Oxf) 47:635–642

    CAS  Google Scholar 

  • Nesbitt T, Coffman TM, Griffiths R et al. (1992) Crosstransplantation of kidneys in normal and Hyp mice. J Clin Invest 89:1453–1459

    PubMed  CAS  Google Scholar 

  • Nishiyama S, Inoue F, Makuda I (1986) A single case of hypophosphatemic rickets with hypercalciuria. J Pediatr Gastroenterol Nutr 5:826–829

    PubMed  CAS  Google Scholar 

  • Nuovo MA, Dorfman HD, Sun CC et al. (1989) Tumor-induced osteomalacia and rickets. Am J Surg Pathol 13:588–599

    PubMed  CAS  Google Scholar 

  • Olsen HS, Cepeda MA, Zhang QQ et al. (1996) Human stanniocalcin: a possible hormonal regulator of mineral metabolism. Proc Natl Acad Sci USA 93:1792–1796

    PubMed  CAS  Google Scholar 

  • Ono T, Tanaka H, Yamate T et al. (1996) 24R,25-dihydroxyvitamin D3 prornotes bone formation without causing excessive resorption in hypophosphatemic mice. Endocrinology 137:2633–2637

    PubMed  CAS  Google Scholar 

  • Pastoriza-Munoz E, Colindres RE, Lassiter WE et al. (1978) Effect of parathyroid hormone on phosphate reabsorption in rat distal convolution. Am J Physiol 235:F321–F330

    PubMed  CAS  Google Scholar 

  • Pfister MF, Ruf I, Stange G et al. (1998) Parathyroid hormone leads to the lysosomal degradation of the renal type 11 Na/Pi cotransporter. Proc Natl Acad Sci USA 95:1909–1914

    PubMed  CAS  Google Scholar 

  • Polisson RP, Martinez S, Khoury M et al. (1985) Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med 313:1–6

    PubMed  CAS  Google Scholar 

  • Proesmans WC, Fabry G, Marchai GJ et al. (1987) Autosomal dominant hypophosphataemia with elevated serum 1,25 dihydroxyvitamin D and hypercalciuria. Pediatr Nephrol 1:479–484

    PubMed  CAS  Google Scholar 

  • Quabius ES, Murer H, Biber J (1995) Expression of a renal Na/Pi cotransporter (NaPi-1) in MDCK and LLC-PKI cells. Pflugers Arch 430:132–136

    PubMed  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228

    PubMed  CAS  Google Scholar 

  • Reid IR, Hardy DC, Murphy WA et al. (1989) X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine (Baltimore) 68:336–352

    CAS  Google Scholar 

  • Reid IR, Murphy WA, Hardy DC et al. (1991) X-linked hypophosphatemia: skeletal mass in adults assessed by histomorphometry, computed tomography, and absorptiometry. Am J Med 90:63–69

    PubMed  CAS  Google Scholar 

  • Reinhart SC, Norden AG, Lapsley M et al. (1995) Characterization of carrier females and affected males with X-linked recessive nephrolithiasis. J Am Soc Nephrol 5:1451–1461

    PubMed  CAS  Google Scholar 

  • Reusz GS, Miltenyi G, Stubnya G et al. (1997) X-linked hypophosphatemia: effects of treatment with recombinant human growth hormone. Pediatr Nephrol 11:573–577

    PubMed  CAS  Google Scholar 

  • Rifas L, Gupta A, Hruska KA et al. (1995) Altered osteoblast gluconeogenesis in X-linked hypophosphatemie mice is associated with a depressed intracellular pH. Calcif Tissue Int 57:60–63

    PubMed  CAS  Google Scholar 

  • Rifas L, Cheng S, Halstead LR et al. (1997) Skeletal casein kinase activity defect in the HYP mouse. Calcif Tissue Int 61:256–259

    PubMed  CAS  Google Scholar 

  • Rizzoli R, Fleisch H, Bonjour JP (1977) Role of 1,25-dihydroxyvitamin DJ on intestinal phosphate absorption in rats with a normal vitamin D supply. J Clin Invest 60:639–647

    PubMed  CAS  Google Scholar 

  • Rowe PS, Goulding JN, Francis F et al. (1996) The gene for X-linked hypophosphataemic rickets maps to a 200-300 kb region in Xp22.1, and is located on a single YAC containing a putative vitamin D response element (VDRE). Hum Genet 97:345–352

    PubMed  CAS  Google Scholar 

  • Rowe PSN, Ong ACM, Cockerill FJ et al. (1996) Candidate 56 and 58 kDa protein(s) responsible for mediating the renal defects in oncogenie hypophosphatemic osteomalacia. Bone 18:159–169

    PubMed  CAS  Google Scholar 

  • Rowe PSN, Oudet C, Francis F et al. (1997) Distribution of mutations in the PEX gene in families with X-linked hypophosphatemic rickets (HYP). Hum Mol Genet 6:539–549

    PubMed  CAS  Google Scholar 

  • Ruchon AF, Marcinkiewicz M, Siegfried G et al. (1998) Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histochem Cytochem 46:459–468

    PubMed  CAS  Google Scholar 

  • Ryan EA, Reiss E (1984) Oncogenous osteomalacia. Review of the world literature of 42 cases and report of two new cases. Am J Med 77:501–512

    PubMed  CAS  Google Scholar 

  • Saggese G, Baroncelli GI, Bertelloni S et al. (1995) Longterm growth hormone treatment in children with renal hypophosphatemic rickets: effects on growth, mineral metabolism, and bone density. J Pediatr 127:395–402

    PubMed  CAS  Google Scholar 

  • Schmidt M, Kroger B, Jacob E et al. (1994) Molecular characterization of human and bovine endothelin converting enzyme (ECE-l). FEBS Lett 356:238–243

    PubMed  CAS  Google Scholar 

  • Schnabel D, Mühlendahl KE von, Morlot M et al. (1996) The hereditary syndrome of hypophosphatemic rickets and hypercalciuria (HHRH): possible diagnostie pitfalls and clinieal follow-up (abstract). Horm Res [Suppl 2] 46:84

    Google Scholar 

  • Schultze G, Delling G, Faensen M et al. (1989) Oncogenic hypophosphatemic osteomalacia. Dtsch Med Wochenschr 114:1073–1078

    PubMed  CAS  Google Scholar 

  • Scriver CR, MacDonald W, Reade T et al. (1977) Hypophosphatemic nonrachitic bone disease: an entity distinct from X-linked hypophosphatemia in the renal defect, bone involvement, and inheritance. Am J Med Genet 1:101–117

    PubMed  CAS  Google Scholar 

  • Seikaly MG, Brown R, Baum M (1997) The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics 100:879–884

    PubMed  CAS  Google Scholar 

  • Sestoft L (1979) ls the relationship between the plasma concentration of inorganic phosphate and the rate of oxygen consumption of significance in regulating energy metabolism in mammals? Scand J Clin Lab Invest 39:191–197

    PubMed  CAS  Google Scholar 

  • Shibui A, Tsunoda T, Seki N et al. (1999) Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter. J Hum Genet 44:190–192

    PubMed  CAS  Google Scholar 

  • Skovby F, Svejgaard E, Moller J (1987) Hypophosphatemic rickets in linear sebaceous nevus sequence. J Pediatr 111:855–857

    PubMed  CAS  Google Scholar 

  • Stiekler GB, Morgenstern BZ (1989) Hypophosphataemic rickets: final height and clinical symptoms in adults. Lancet 2:902–905

    Google Scholar 

  • Strom TM, Francis F, Lorenz B et al. (1997) Pex gene deletions in Gy and Hyp mice provide mouse models for X-linked hypophosphatemia. Hum Mol Genet 6:165–171

    PubMed  CAS  Google Scholar 

  • Swischuk LE, Hayden CK, Jr, (1979) Riekets: a roentgenographic scheme for diagnosis. Pediatr Radiol 8:203–208

    PubMed  CAS  Google Scholar 

  • Tenenhouse HS (1997) Cellular and molecular mechanisms of renal phosphate transport. J Bone Miner Res 12:159–164

    PubMed  CAS  Google Scholar 

  • Tenenhouse HS, Econs JM (2001) Mendelian hypophosphatemias. In: Scriver CR, Beaudet AL, Valle D, Sly WS et al. (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, NewYork, pp 5039–5067

    Google Scholar 

  • Tenenhouse HS, Jones G (1990) Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X-linked hypophosphatemic rickets. J Clin Invest 85: 1450–1455

    PubMed  CAS  Google Scholar 

  • Tenenhouse HS, Scriver CR (1981) Effect of 1,25-dihydroxyvitamin D3 on phosphate homeostasis in the X-linked hypophosphatemic (Hyp) mouse. Endocrinology 109: 658–660

    PubMed  CAS  Google Scholar 

  • Tenenhouse HS, Meyer RA Jr, Mandia S et al. (1992) Renal phosphate transport and vitamin D metabolism in X-linked hypophosphatemic Gy mice: responses to phosphate deprivation. Endocrinology 131:51–56

    PubMed  CAS  Google Scholar 

  • Tenenhouse HS, Werner A, Biber J et al. (1994) Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J Clin Invest 93:671–676

    PubMed  CAS  Google Scholar 

  • Tenenhouse HS, Martel J, Biber J et al. (1995) Effect of P(i) restriction on renal Na(+)-P(i) cotransporter mRNA and immunoreactive protein in X-linked Hyp mice. Am J Physiol 268:FI062–FI069

    Google Scholar 

  • Tenenhouse HS, Roy S, Martel J et al. (1998) Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534

    PubMed  CAS  Google Scholar 

  • Thakker RV, Read AP, Davies KE et al. (1987) Bridging markers defining the map position of X linked hypophosphataemic riekets. J Med Genet 24:756–760

    PubMed  CAS  Google Scholar 

  • The HYP Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rcekets. Nat Genet 11:130–136

    Google Scholar 

  • Tieder M, Modai D, Samuel R et al. (1985) Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 312:611–617

    PubMed  CAS  Google Scholar 

  • Tieder M, Modai D, Shaked U et al. (1987).“diopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med 316:125–129

    PubMed  CAS  Google Scholar 

  • Tieder M, Arie R, Bab I et al. (1992) A new kindred with hereditary hypophosphatemic rickets with hyperealciuria: implications for correct diagnosis and treatment. Nephron 62:176–181

    PubMed  CAS  Google Scholar 

  • Tulloch EN, Andrews FF (1983) The association of dental abscesses with vitamin D resistant rickets. Br Dent J 154:136–138

    PubMed  CAS  Google Scholar 

  • Uehida H, Yokoyama S, Kashima K et al. (1991) Oncogenic vitamin D resistant hypophosphatemic osteomalacia (benign ossifying mesenehymal tumor of bone): ease report. Ipn J Clin Oncol 21:218–226

    Google Scholar 

  • Ullrieh KJ, Rumrich G, Kloss S (1977) Phosphate transport in the proximal convolution of the rat kidney, 1. Tubular heterogeneity, effect of parathyroid hormone in acute and chronic parathyroidectomized animals and effect of phosphate diet. Pflugers Arch 372:269–274

    Google Scholar 

  • Verge CF, Lam A, Simpson JM et al. (1991) Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med 325:1843–1848

    PubMed  CAS  Google Scholar 

  • Wagner GF, Vozzolo BL, Jaworski E et al. (1997) Human stanniocalein inhibits renal phosphate exeretion in the rat. J Bone Miner Res 12:165–171

    PubMed  CAS  Google Scholar 

  • Walker JJ, Yan TS, Quamme GA (1987) Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membrane. Am J Physiol 252: F226–F231

    PubMed  CAS  Google Scholar 

  • Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2:309–310

    PubMed  CAS  Google Scholar 

  • Weidner N (1991) Review and update: oneogenic osteomalacia-riekets. Ultrastruct Pathol 15:317–333

    PubMed  CAS  Google Scholar 

  • Werner A, Moore ML, Mantei N et al. (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proe Natl Aead Sci USA 88:9608–9612

    CAS  Google Scholar 

  • Whyte MP, Sehranck FW, Armamento-Villareal R (1996) X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J Clin Endocrinol Metab 81:4075–4080

    PubMed  CAS  Google Scholar 

  • Wilson DM, Lee PD, Morris AH et al. (1991) Growth hormone therapy in hypophosphatemic rickets. Am J Dis Child 145:1165–1170

    PubMed  CAS  Google Scholar 

  • Wilson DR, York SE, Jaworski ZF et al. (1965) Studies in hypophosphatemic vitamin D-refractory osteomalacia in adults. Medicine (Baitimore) 44:99–134

    CAS  Google Scholar 

  • Winters RW, Graham JB, Williams TF et al. (1958) A genetic study of familial hypophosphatemia and vitamin D-resistant rickets with a review of the literature. Medieine (Baltimore) 37:97–142

    CAS  Google Scholar 

  • Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hyperealeiuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493

    PubMed  CAS  Google Scholar 

  • Xu D, Emoto N, Giaid A et al. (1994) ECE-1: a membranebound metalloprotease that catalyzes the proteolytie activation of big endothelin-l. Cell 78:473–485

    PubMed  CAS  Google Scholar 

  • Yamaoka K, Seino Y, Satomura K et al. (1986) Abnormal relationship between serum phosphate coneentration and renal 25-hydroxycholeealciferol-1-alpha-hydroxylase activity in X-linked hypophosphatemic mice. Miner Electrolyte Metab 12:194–198

    PubMed  CAS  Google Scholar 

  • Yamate T, Tanaka H, Nagai Y et al. (1994) Bone-forming ability of 24R,25-dihydroxyvitamin D3 in the hypophosphatemic mouse. J Bone Miner Res 9:1967–1974

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strom, TM., Lorenz-Depiereux, B. (2001). Monogen vererbte Hypophosphatämien. In: Ganten, D., Ruckpaul, K., Janssen, O.E., Heufelder, A.E. (eds) Molekularmedizinische Grundlagen von Endokrinopathien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56858-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56858-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63216-7

  • Online ISBN: 978-3-642-56858-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics