Skip to main content

The Design of Molecular Artificial Sugar Sensing Systems

  • Chapter
New Trends in Fluorescence Spectroscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 1))

Abstract

This article is concerned with the development of new receptor molecules that can precisely recognize sugar molecules by making use of the reversible formation of boronate esters from suitable diols and boronic acids Since one boronic acid can react with cis-1,2-diols or cis-1,3-diols to form a boronate ester, one di boronic acid can immobilize two suitably positioned diol units to form a sugar-containing macrocycle that can discriminate between the relative positions of cis-diol moieties on the guest saccharide When a boronic acid-based receptor contains an aminomethylfluorophore, the complexation event can be conveniently read out by fluorescence spectroscopy This is a novel application of PET (photoinduced electron transfer) sensors: sugar binding changes the strength of the B…N interaction which consequently changes the fluorescence quenching efficiency of the amine We have demonstrated, using a chiral 1, 1′-binaphthyl group as a fluorophore, that even discrimination between enantiomeric saccharides is possible These abundant examples support the superiority of boronic acid-based covalent-bond recognition over hydrogen bond-based noncovalent-bond recognition for sugars in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For comprehensive reviews see: Rebek J Jr (1990) Angew Chem Int Ed Engl 29:245; Hamilton AD (1991) Bioorg Chem Front 2:115

    Article  Google Scholar 

  2. Tsukagoshi K, Shinkai S (1991) J Org Chem 56:4089; Shiomi Y, Saisho M, Tsukagoshi K, Shinkai S, (1993) J Chem Soc, Perkin Trans 1:2111

    Article  CAS  Google Scholar 

  3. Shinkai S, Tsukagoshi K, Ishikawa Y, Kunitake T (1991) J Chem Soc, Chem Commun 1039

    Google Scholar 

  4. Kondo K, Shiomi Y, Saisho M, Harada T, Shinkai S (1992) Tetrahedron 48:8239

    Article  CAS  Google Scholar 

  5. James TD, Harada T, Shinkai S (1993) J Chem Soc, Chem Commun 857

    Google Scholar 

  6. Kano K, Yoshiyasu K, Hashimoto S (1988) J Chem Soc, Chem Commun 801

    Google Scholar 

  7. Aoyama Y, Tanaka Y, Toi H, Ogoshi H (1988) J Am Chem Soc 110:634

    Article  CAS  Google Scholar 

  8. Kikuchi Y, Kobayashi K, Aoyama Y (1992) J Am Chem Soc 114:1351

    Article  CAS  Google Scholar 

  9. Lorand JP, Edwards JO (1959) J Org Chem 24:769

    Article  CAS  Google Scholar 

  10. Yoon J, Czarnik AW (1992) J Am Chem Soc 114:5874

    Article  CAS  Google Scholar 

  11. Mohler LK, Czarnik AW (1993) J Am Chem Soc 115:2998

    Article  CAS  Google Scholar 

  12. Suenaga H, Mikami M, Sandanayake KRAS, Shinkai S (1995) Tetrahedron Lett 36:4825

    CAS  Google Scholar 

  13. Nagai Y, Kobayashi K, Toi H, Aoyama Y (1993) Bull Chem Soc Jpn 66:2965

    Article  CAS  Google Scholar 

  14. Norrild JC, Eggert H (1995) J Am Chem Soc 117:1479

    Article  CAS  Google Scholar 

  15. Nakashima K, Shinkai S (1994) Chem Lett: 1267

    Google Scholar 

  16. Sandanayake KRAS, Nakashima K, Shinkai S (1994) J Chem Soc, Chem Commun 1621

    Google Scholar 

  17. Takeuchi M, Yoda S, Imada T, Shinkai S (1997) Tetrahedron 53:8335

    Article  CAS  Google Scholar 

  18. Bryan AJ, de Silva AP, Rupasingha RAD, Sandanayake KRAS (1989) Biosensors 4:169; de Silva AP, Rupasingha RAD (1985) J Chem Soc, Chem Commun 1669

    Article  CAS  Google Scholar 

  19. James TD, Sandanayake KRAS, Shinkai S (1994) J Chem Soc, Chem Commun 477

    Google Scholar 

  20. James TD, Sandanayake KRAS, Shinkai S (1994) Angew Chem Int Ed Engl 33:2207

    Article  Google Scholar 

  21. James TD, Sandanayake KRAS, Iguchi R, Shinkai S (1995) J Am Chem Soc 117:8982; more recently, it has been shown that the bound species may be changed from α-D-glucopyranose to α-D-glucofuranose: Bielecki M, Eggert H, Norrild JC (1999), J Chem Soc, Perkin Trans 2:449

    Article  CAS  Google Scholar 

  22. James TD, Sandanayake KRAS, Shinkai S (1995) Nature 374:345

    Article  CAS  Google Scholar 

  23. Takeuchi M, Yamamoto M, Shinkai S (1997) J Chem Soc, Chem Commun: 1731; Takeuchi M, Yamamoto M, Shinkai S (1998) Tetrahedron 54:3125

    Google Scholar 

  24. Kijima H, Takeuchi M, Robertson A, Shinkai S, Cooper C, James TD (1999) J Chem Soc, Chem Commun 2011

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shinkai, S., Robertson, A. (2001). The Design of Molecular Artificial Sugar Sensing Systems. In: Valeur, B., Brochon, JC. (eds) New Trends in Fluorescence Spectroscopy. Springer Series on Fluorescence, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56853-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56853-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63214-3

  • Online ISBN: 978-3-642-56853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics