Skip to main content

Tracking Molecular Dynamics of Flavoproteins with Time-Resolved Fluorescence Spectroscopy

  • Chapter
New Trends in Fluorescence Spectroscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 1))

Abstract

The intrinsic fluorescence of tryptophan containing proteins is nowadays commonly used to study the physical and dynamic properties of this prominent class of biomacromolecules [15]. Although tryptophan fluorescence experiments have provided detailed insight in many protein systems, the applicability of the technique is strongly dependent on the number and position of the tryptophan residues, as well as on the specific research objective Reason for this is the well-known complexity of the photophysical properties of the indole ring. Due to the degeneracy of energy levels in the excited state (1 L A and 1 L B) the observed nonexponential fluorescence decays are rather rule than exception, even in proteins that contain only one tryptophan in a rigid protein environment. In addition, fast depolarization of the fluorescence originating from interconversion between these two states complicates the interpretation of time— resolved fluorescence anisotropy measurements [6]. Particularly for the investigation of dynamic events such as protein motions, these fluorescence characteristics of the indole moietv prove a serious obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins Annu Rev Biochem 54:43–71

    Article  CAS  Google Scholar 

  2. Eftink MR (1991) Fluorescence techniques for studying protein structure Meth Biochem Anal 35:127–205

    Article  CAS  Google Scholar 

  3. Demchenko AP (1992) Fluorescence and dynamics in proteins In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 3 Plenum Press, New York, pp 65–111

    Google Scholar 

  4. Millar DP (1996) Time-resolved fluorescence spectroscopy Curr Opin Struct Biol 6:637–642

    Article  CAS  Google Scholar 

  5. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn Plenum Press, New York

    Google Scholar 

  6. Ruggiero AJ, Todd DC, Fleming GR (1990) Subpicosecond anisotropy studies of tryptophan in water J Am Chem Soc 112:1003–1014

    Article  CAS  Google Scholar 

  7. Tsien RY (1998) The green fluorescent protein Ann Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  8. Clegg RM (1996) Fluorescence resonance energy transfer In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy Wiley, New York, pp 179–252

    Google Scholar 

  9. Müller F (1991) Chemistry and biochemistry of flavoenzymes, vols I, II, III CRC Press, Boca Raton

    Google Scholar 

  10. Weber G (1950) Fluorescence of riboflavin and flavin-adenine dinucleotide Biochem J 47:114–121

    CAS  Google Scholar 

  11. Spencer RD, Weber G (1972) Thermodynamics and kinetics of the intramolecular complex in flavin-adenine dinucleotide In: Åkeson Å, Ehrenberg A (eds) Structure and function of oxidation reduction enzymes Pergamon, Oxford, pp 393–399

    Google Scholar 

  12. Visser AJWG (1984) Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence Photochem Photobiol 40:703–706

    Article  CAS  Google Scholar 

  13. Heelis PF (1991) The photochemistry of flavins In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol I CRC Press, Boca Raton, pp 171–200

    Google Scholar 

  14. Zheng YJ, Ornstein RL (1996) A theoretical study of the structures of flavin in different oxidation and protonation states J Am Chem Soc 118:9402–9408

    Article  CAS  Google Scholar 

  15. Platenkamp RJ, Palmer MH, Visser AJWG (1980) Ab initio molecular orbital studies of flavin radicals and the lowest triplet state of isoalloxazine J Mol Struct 67:45–64

    Article  CAS  Google Scholar 

  16. Platenkamp RJ, Palmer MH, Visser AJWG (1987) Ab initio molecular orbital studies of closed shell flavins Eur Biophys J 14:393–402

    Article  CAS  Google Scholar 

  17. Johansson LB-Å, Davidsson Å, Lindblom G, Razi Naqvi K ( 1979) Electronic transitions in the isoalloxazine ring and orientation of flavins in mode membranes studied by polarized light spectroscopy Biochemistry 18:4249–4253

    Article  CAS  Google Scholar 

  18. Bastiaens PIH, Van Hoek A, Benen JAE, Brochon JC, Visser AJWG (1992) Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii Biophys J 63:839–853

    Article  CAS  Google Scholar 

  19. Visser AJWG, Van Hoek A, Visser NV, Lee Y, Ghisla S (1997) Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischen Photochem Photobiol 65:570–575

    Article  CAS  Google Scholar 

  20. Singer TP, Mclntire WS (1984) Covalent attachment of flavin to flavoproteins: occurrence, assay and synthesis Meth Enzymol 106:369–378

    Article  CAS  Google Scholar 

  21. Decker KF (1991) Covalent flavoproteins In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol II CRC Press, Boca Raton, pp 343–375

    Google Scholar 

  22. Karplus M, McCammon JA (1983) Dynamics of proteins: elements and function Ann Rev Biochem 53:263–300

    Article  Google Scholar 

  23. Frauenfelder H, Gratton E (1986) Protein dynamics and hydration Meth Enzym 127:207–216

    Article  CAS  Google Scholar 

  24. Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins Annu Rev Biophys Biophys Chem 17:451–479

    Article  CAS  Google Scholar 

  25. Frauenfelder H, Alberding NA, Ansari A, Braunstein D, Cowen BR, Hong MK, Iben IET, Johnson JB, Luck S, Marden MC, Mourant JR, Ormos P, Reinisch L, Scholl R, Schulte A, Shyamsunder E, Sorensen LB, Steinbach PJ, Xie A, Young RD, Yue KT (1990) Proteins and pressure J Phys Chem 94:1024–1037

    Article  CAS  Google Scholar 

  26. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins Science 254:1598–1603

    Article  CAS  Google Scholar 

  27. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins Adv Protein Chem 38:181–360

    Article  CAS  Google Scholar 

  28. Gö N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of lowfrequency vibrational modes Proc Natl Acad Sci USA 80:3696–3700

    Article  Google Scholar 

  29. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor Proc Natl Acad Sci USA 80:6571–6575

    Article  CAS  Google Scholar 

  30. Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins Biochemistry 33:6739–6749

    Article  CAS  Google Scholar 

  31. Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN (1990) Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins Nature 344:784–787

    Article  CAS  Google Scholar 

  32. Gerstein M, Anderson BF, Norris GE, Baker EN, Lesk AM, Chothia C (1993) Domain closure in lactoferrin Two hinges produce a see-saw motion between alternative closepacked interfaces J Mol Biol 234:357–372

    Article  CAS  Google Scholar 

  33. Schulz GE, Müller CW, Diederichs K (1990) Induced-fit movements in adenylate kinases. J Mol Biol 213:627–630

    Article  CAS  Google Scholar 

  34. Gerstein M, Schulz G, Chothia C (1993) Domain closure in adenylate kinase Joints on either side of two helices close like neighboring fingers J Mol Biol 229:494–501

    Article  CAS  Google Scholar 

  35. Stillman TJ, Baker PJ, Britton KL, Rice DW (1993) Conformational flexibility in glutamate de-hydrogenase Role of water in substrate recognition and catalysis. J Mol Biol 234:1131–1139

    Article  CAS  Google Scholar 

  36. Remington S, Wiegand G, Huber R (1982) Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution J Mol Biol 158:111–152

    Article  CAS  Google Scholar 

  37. Lesk AM, Chothia C (1984) Mechanisms of domain closure in proteins J Mol Biol 174:175–191

    Article  CAS  Google Scholar 

  38. Eklund H, Samama JP, Wallén L, Brändén CI, Åkeson Å, Jones TA (1981) Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 Å resolution J Mol Biol 146:561–587

    Article  CAS  Google Scholar 

  39. Colonna-Cesari F, Perahia D, Karplus M, Eklund H, Brãndén CI, Tapia O (1986) Interdomain motion in liver alcohol dehydrogenase Structural and energetic analysis of the hinge bending mode J Biol Chem 261:15,273–15,280

    CAS  Google Scholar 

  40. Faber HR, Matthews BW (1990) A mutant T4 lysozyme displays five different crystal conformations. Nature 348:263–266

    Article  CAS  Google Scholar 

  41. Dixon MM, Nicholson H, Shewchuk L, Baase WA, Matthews BW (1992) Structure of a hinge-bending bacteriophage T4 lysozyme mutant, Ile3 → Pro J Mol Biol 227:917–933

    Article  CAS  Google Scholar 

  42. Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport Biochemistry 31:10,657–10,663

    Article  CAS  Google Scholar 

  43. Kurzynski M (1998) A synthetic picture of intramolecular dynamics of proteins Towards a contemporary statistical theory of biochemical processes Prog Biophys Mol Biol 69:23–82

    Article  CAS  Google Scholar 

  44. Kurzynski M (1997) Protein machine model of enzymatic reactions gated by enzyme internal dynamics Biophys Chem 65:1–28

    Article  CAS  Google Scholar 

  45. Kurzynski M (1998) Time course of reactions controlled and gated by intramolecular dynamics of proteins: predictions of the model of random walk on fractal lattices Proc Natl Acad Sci USA 95:11,685–11,690

    Article  CAS  Google Scholar 

  46. Frauenfelder H, Wolynes PG (1985) Rate theories and puzzles of hemeprotein kinetics. Science 229:337–345

    Article  CAS  Google Scholar 

  47. Gavish B, Werber MM (1979) Viscosity-dependent structural fluctuations in enzyme catalysis Biochemistry 18:1269–1275

    Article  CAS  Google Scholar 

  48. Beece D, Eisenstein L, Frauenfelder H, Good D, Marden MC, Reinisch L, Reynolds AH, Sorensen LB, Yue KT (1980) Solvent viscosity and protein dynamics Biochemistry 19:5147–5157

    Article  CAS  Google Scholar 

  49. Williams CH Jr (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase — a family of flavoenzyme transhydrogenases In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol III CRC Press, Boca Raton, pp 121–211

    Google Scholar 

  50. Thieme R, Pai EF, Schirmer RH, Schulz GE (1981) Three-dimensional structure of glutathione reductase at 2 Å resolution J Mol Biol 152:763–782

    Article  CAS  Google Scholar 

  51. Karplus PA, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 195:701–729

    Article  CAS  Google Scholar 

  52. Karplus PA, Schulz GE (1989) Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 Å resolution J Mol Biol 210:163–180

    Article  CAS  Google Scholar 

  53. Ermler U, Schulz GE (1991) The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution Proteins Struct Funct Genet 9:174–179

    Article  CAS  Google Scholar 

  54. Mittl PRE, Schulz GE (1994) Structure of glutathione reductase from Escherichia coli at 1.86 Å resolution: comparison with the enzyme from human erythrocytes Protein Sci 3:799–809

    Article  CAS  Google Scholar 

  55. Pai EF, Schulz GE (1983) The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates J Biol Chem 258:1752–1757

    CAS  Google Scholar 

  56. Williams CH Jr (1995) Mechanism and structure of thioredoxin reductase from Escherichia coli FASEB J 9:1267–1276

    CAS  Google Scholar 

  57. Waksman G, Krishna TSR, Williams CH Jr, Kuriyan J (1994) Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution Implications for a large conformational change during catalysis J Mol Biol 236:800–816

    Article  CAS  Google Scholar 

  58. Kuriyan J, Krishna TSR, Wong L, Guenther B, Pahler A, Williams CH Jr, Model P (1991) Convergent evolution of similar function in two structurally divergent enzymes Nature 352:172–174

    Article  CAS  Google Scholar 

  59. Mulrooney SB, Williams CH Jr (1997) Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation Protein Sci 6:2188–2195

    Article  CAS  Google Scholar 

  60. Schreuder HA, Mattevi A, Obmolova G, Kalk KH, Hol WGJ, Van der Bolt FJT, Van Berkel WJH (1994) Crystal structures of wild-type p-hydroxybenzoate hydroxylase complexed with 4-aminobenzoate, 2,4-dihydroxybenzoate and 2-hydroxy-4-aminobenzoate and of the Tyr222Ala mutant, complexed with 2-hydroxy-4-aminobenzoate Evidence for a proton channel and a new binding mode of the flavin ring Biochemistry 33:10,161–10,170

    Article  CAS  Google Scholar 

  61. Gatti DL, Palfey BA, Lah MS, Entsch B, Massey V, Ballou DP, Ludwig ML (1994) The mobile flavin of 4-OH benzoate hydroxylase Science 266:110–114

    Article  CAS  Google Scholar 

  62. Entsch B, Van Berkel WJH (1995) Structure and mechanism of para-hydroxybenzoate hydroxylase FASEB J 9:476–483

    CAS  Google Scholar 

  63. Schreuder HA, Prick PAJ, Wieringa RK, Vriend G, Wilson KS, Hol WGJ, Drenth J (1989) Crystal structure of the p-hydroxybenzoate hydroxylase-substrate complex refined at 1.9 Å resolution J Mol Biol 208:679–696

    Article  CAS  Google Scholar 

  64. Van der Bolt FJT, Vervoort J, Van Berkel WJH (1996) Flavin motion in p-hydroxybenzoate hydroxylase Substrate and effector specificity of the Tyr222Ala mutant Eur J Biochem 237:592–600

    Article  Google Scholar 

  65. Eppink MHM, Van Berkel WJH, Tepliakov A, Schreuder HA (1999) Crystal structures of unactivated p-hydroxybenzoate hydroxylase In: Ghisla S, Kroneck P, Macheroux, P, Sund H (eds) Flavins and flavoproteins 1999 Agency for Scientific Publications, Berlin (in press)

    Google Scholar 

  66. Tanaka F, Tamai N, Yamazaki I (1989) Picosecond-resolved fluorescence spectra of D-amino-acid oxidase A new fluorescent species of the coenzyme Biochemistry 28:4259–4262

    Article  CAS  Google Scholar 

  67. Tanaka F, Tamai N, Yamazaki I, Nakashima N, Yoshihara K (1989) Temperature-induced changes in the coenzyme environment of D-amino acid oxidase revealed by the multiple decays of FAD fluorescence Biophys J 28:901–909

    Article  Google Scholar 

  68. Bastiaens PIH, Van Hoek A, Wolkers WF, Brochon JC, Visser AJWG (1992) Comparison of the dynamical structures of lipoamide dehydrogenase and glutathione reductase by time-resolved polarized flavin fluorescence Biochemistry 31:7050–7060

    Article  CAS  Google Scholar 

  69. Van den Berg PAW, Van Hoek A, Walentas CD, Perham RN, Visser AJWG (1998) Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase Biophys J 74:2046–2058

    Article  Google Scholar 

  70. Visser AJWG, Van den Berg PAW, Visser NV, Van Hoek A, Van den Burg HA, Parsonage D, Claiborne A (1998) Time-resolved fluorescence of flavin adenine dinucleotide in wildtype and mutant NADH peroxidase Elucidation of quenching sites and discovery of a new fluorescence depolarization mechanism J Phys Chem B 102:10,431–10,439

    Article  CAS  Google Scholar 

  71. Brunner K, Tortschanoff A, Hemmens B, Andrew PJ, Mayer B, Kungl AJ (1998) Sensitivity of flavin fluorescence dynamics in neuronal nitric oxidase to cofactor-induced conformational changes and dimerization Biochemistry 37:17,545–17,553

    Article  CAS  Google Scholar 

  72. Mataga N, Chrosrowjan H, Shibata Y, Tanaka F (1998) Ultrafast fluorescence quenching dynamics of flavin chromophores in protein nanospace J Phys Chem B 102:7081–7084

    Article  CAS  Google Scholar 

  73. Boteva R, Visser AJWG, Filippi B, Vriend G, Veenhuis M, Van der Klei IJ (1999) Conformational transitions accompanying oligomerization of yeast alcohol oxidase, a peroxisomal flavoenzyme Biochemistry 38:5034–5044

    Article  CAS  Google Scholar 

  74. Visser AJWG, Grande HJ, Veeger C (1980) Rapid relaxation processes in pig heart lipoamide dehydrogenase revealed by subnanosecond resolved fluorometry Biophys Chem 12:35–49

    Article  CAS  Google Scholar 

  75. De Kok A, Visser AJWG (1987) Flavin binding site differences between lipoamide dehydrogenase and glutathione dehydrogenase as revealed by static and time-resolved flavin fluorescence FEBS Lett 218:135–138

    Article  Google Scholar 

  76. Bajzer Z, Prendergast FG (1993) A model for multiexponential tryptophan fluorescence intensity decay in proteins Biophys J 65:2313–2323

    Article  CAS  Google Scholar 

  77. Visser AJWG, Van Hoek A, Kulinski T, Le Gall J ( 1987) Time-resolved fluorescence studies of flavodoxin Demonstration of picosecond fluorescence lifetimes of FMN in Desulfovibrio flavodoxins FEBS Lett 224:406–410

    Article  CAS  Google Scholar 

  78. Karen A, Sawada MT, Tanaka F, Mataga N (1987) Dynamics of excited flavoproteinspicosecond laser photolysis studies Photochem Photobiol 45:49–53

    Article  CAS  Google Scholar 

  79. Rehm D, Weiler A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer Israel J Chem, 21st Farkas Memorial Symp 8:259–271

    CAS  Google Scholar 

  80. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  81. Serre L, Vellieux FMD, Medina M, Gomez-Moreno C, Fontecilla-Camps JC, Frey M (1996) X-ray structure of the ferredoxin: NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 Å resolution, and crystallographic studies of NADP+binding at 2.25 Å resolution J Mol Biol 263:20–39

    Article  CAS  Google Scholar 

  82. Stehle T, Ahmed SA, Claiborne A, Schulz GE (1991) Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 Å resolution J Mol Biol 221:1325–1344

    CAS  Google Scholar 

  83. Stehle T, Claiborne A, Schulz GE (1993) NADH binding site and catalysis of NADH peroxidase. Eur J Biochem 211:221–226

    Article  CAS  Google Scholar 

  84. Wang PF, Veine DM, Ahn SH, Williams CH Jr (1996) A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: preparation and characterization. Biochemistry 35:4812–4819

    Article  CAS  Google Scholar 

  85. Veine DM, Mulrooney SB, Wang PF, Williams CH Jr (1998) Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin Protein Sci 7:1441–1450

    Article  CAS  Google Scholar 

  86. Sakmann B, Neher E (eds) (1995) Single-channel recording, 2nd edn Plenum, New York

    Google Scholar 

  87. Radmacher M, Fritz M, Hansma HG, Hansma PK (1994) Direct observation of enzyme activity with the atomic force microscope Science 265:1577–1579

    Article  CAS  Google Scholar 

  88. Rees WA, Keller RW, Vesenka JP, Yang G, Bustamante C (1993) Evidence of DNA bending in transcription complexes imaged by scanning force microscopy Science 260:1646–1649

    Article  CAS  Google Scholar 

  89. Baro AM, Miranda R, Alaman J, Garcia N, Binnig G, Röhrer H, Gerber C, Carrascosa JL (1985) Determination of surface topography of biological specimens at high resolution by scanning tunneling microscopy Nature: 315:253–254

    Article  CAS  Google Scholar 

  90. Binnig G, Quate CF, Gerber C ( 1986) Atomic force microscope Phys Rev Lett 56:930–933

    Article  Google Scholar 

  91. Xue QF, Yeung ES (1995) Differences in the chemical reactivity of individual molecules of an enzyme Nature 373:681–683

    Article  CAS  Google Scholar 

  92. Weiss S (1999) Fluorescence spectroscopy of single biomolecules Science 283:1676–1683

    Article  CAS  Google Scholar 

  93. Xie XS, Trautman JK (1999) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480

    Article  Google Scholar 

  94. Nie SM, Zare RN (1997) Optical detection of single molecules Annu Rev Biophys Biomol Struct 26:567–596

    Article  CAS  Google Scholar 

  95. Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Imaging and time-resolved spectroscopy of single molecules at an interface Science 272:255–258

    Article  CAS  Google Scholar 

  96. Ha T, Enderle Th, Chemla DS, Selvin PR, Weiss S (1996) Single molecule dynamics studied by polarization modulation Phys Rev Lett 77:3979–3982

    Article  CAS  Google Scholar 

  97. Ha T, Glass J, Enderle T, Chemla DS, Weiss S (1998) Hindered rotational diffusion and rotational jumps of single molecules Phys Rev Lett 80:2093–2096

    Article  CAS  Google Scholar 

  98. Wennmalm S, Edman L, Rigler R (1997) Conformational fluctuations in single DNA molecules Proc Natl Acad Sci USA 94:10,641–10,646

    Article  CAS  Google Scholar 

  99. Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics Science 282:1877–1882

    Article  CAS  Google Scholar 

  100. Yokota H, Saito K, Yanagida T (1998) Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution Phys Rev Lett 80:4606–4609

    Article  CAS  Google Scholar 

  101. Qian H, Elson EL (1999) Quantitative study of polymer conformation and dynamics by single-particle tracking Biophys J 76:1598–1605

    Article  CAS  Google Scholar 

  102. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy I Conceptual basis and theory Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  103. Ehrenberg M, Rigler R (1974) Rotational Brownian motion and fluorescence intensity fluctuations Chem Phys 4:390–401

    Article  CAS  Google Scholar 

  104. Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion Eur Biophys J 22:169–175

    Article  CAS  Google Scholar 

  105. Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology Proc Natl Acad Sci USA 91:5740–5747

    Article  CAS  Google Scholar 

  106. Schwüle P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution Biophys J 72: 1878–1886

    Article  Google Scholar 

  107. Kettling U, Koltermann A, Schwüle P, Eigen M (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy Proc Natl Acad Sci USA 95:1416–1420

    Article  CAS  Google Scholar 

  108. Edman L, Mets U, Rigler R (1996) Conformational transitions monitored for single molecules in solution Proc Natl Acad Sci USA 93:6710–6715

    Article  CAS  Google Scholar 

  109. Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE, Chemla DS, Weiss S, Schultz PG (1999) Single-pair fluorescence energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations Proc Natl Acad Sci USA 96:3670–3675

    Article  CAS  Google Scholar 

  110. Eggeling C, Fries JR, Brand L, Günther R, Seidel CAM (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy Proc Natl Acad Sci USA 95:1556–1561

    Article  CAS  Google Scholar 

  111. Fries R, Brand L, Eggeling C, Köllner M, Seidel CAM (1998) Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. J Phys Chem A 102:6601–6613

    Article  CAS  Google Scholar 

  112. Schaffer J, Volkmer A, Eggeling C, Subramaniam V, Striker G, Seidel CAM (1999) Identification of single molecules in aqueous solution by time-resolved fluorescence anisotropy J Phys Chem A 103:331–336

    Article  CAS  Google Scholar 

  113. Xie XS, Lu HP (1998) Single-molecule enzymology J Biol Chem 274:15,967–15,970

    Article  Google Scholar 

  114. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution Nature 374:555–559

    Article  CAS  Google Scholar 

  115. Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, Yanagida T (1996) Direct observation of single kinesin molecules moving along microtubules Nature 380:451–453

    Article  CAS  Google Scholar 

  116. Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of Fj-ATPase Nature 386:299–302

    Article  CAS  Google Scholar 

  117. Yasuda R, Moji H, Kinoshita K, Yoshida M (1998) F1-ATPase is a highly efficient motor that rotates with discrete 120° steps Cell 93:1117–1124

    Article  CAS  Google Scholar 

  118. Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin Cell 92:161–171

    Article  CAS  Google Scholar 

  119. Ha T, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism Proc Natl Acad Sci USA 96:893–898

    Article  CAS  Google Scholar 

  120. Visser AJWG, Van den Berg PAW, Hink MA, Petushkov VN (2000) Fluorescence correlation spectroscopy of flavins and flavoproteins In: Elson EL, Rigler R (eds) Fluorescence correlation spectroscopy Theory and application Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Berg, P.A.W., Visser, A.J.W.G. (2001). Tracking Molecular Dynamics of Flavoproteins with Time-Resolved Fluorescence Spectroscopy. In: Valeur, B., Brochon, JC. (eds) New Trends in Fluorescence Spectroscopy. Springer Series on Fluorescence, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56853-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56853-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63214-3

  • Online ISBN: 978-3-642-56853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics