Skip to main content

Modification of Oilseed Quality by Genetic Transformation

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 62))

Abstract

Oil crops, like oilseed rape and sunflower, are important sources of energy, both for human consumption and for feeding livestock. They are also raw materials for a wide range of industrial products for many non-edible purposes. Modification of the fatty-acid composition to make oil crops more competitive in various segments of the food and industrial oil markets has recently been an important objective of molecular genetics and plant breeding. Consequently, one of the most important objectives of oilseed breeding is the genetic modification of seed storage oil by maximizing the proportion of specific or functional fatty acids in order to obtain tailor-made raw materials suitable for various industrial purposes. However, the quality of vegetable food products has acquired an increased relevance for human nutrition with the advent of so-called functional food. Regarding the specific properties of such nutritives, genetic engineering has the ability to adapt plant storage lipids to meet specific nutritional and even therapeutic requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert B, Lucas O, Khallerhof J, Souvré A, Alibert G (1998) Genetic transformation of sunflower (Helianthus annuus L.) by Agrobacterium tumefaciens infection of pectolyase treated expiants. In: Bervillé A, Tersac M (eds) Proceedings of 4th European Conference on Sunflower Biotechnology, 20–23 Oct, INRA, Montpellier, France. p 64

    Google Scholar 

  • Alibert G, Aslane-Chanabé C, Burrus M (1994) Sunflower tissue and cell cultures and their use in biotechnology. Plant Physiol Biochem 32: 31–44

    CAS  Google Scholar 

  • Anonymous (1991) Pioneer hi-bred halves the time for achieving stable sunflower transformation. Biotechnol News 11:3–4

    Google Scholar 

  • Anonymous (1999) http://www.transgen.de/Aktuell/isaaa_99.html

    Google Scholar 

  • Babic V, Dalta RS, Scoles GJ, Keller WA (1998) Development of efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188

    Article  CAS  Google Scholar 

  • Barro F, Martin A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118:79–81

    Article  Google Scholar 

  • Berrios EF, Gentzbittel L, Alibert G, Griveau Y, Berville A, Sarrafi A (1999) Genetic control of in vitro-organogenesis in recombinant inbred lines of sunflower (Helianthus annuus L.). Plant Breed 118:359–361

    Article  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    Article  PubMed  CAS  Google Scholar 

  • Bhalla PL, Smith N (1998) Agrobacterium tumefaciens-mediated transformation of cauliflower, Brassica oleracea var botrytis. Mol Breed 4:531–541

    Article  CAS  Google Scholar 

  • Bidney D (1990) Expression of β-glucuronidase in sunflower apical meristems following microprojectile bombardment. In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J (eds) Proceedings of 7th International Congress on Plant Tissue and Cell Cultures. Kluwer, Dordrecht, p 48

    Google Scholar 

  • Bidney D, Scelonge CJ, Malone-Schoneberg JB (1992) Transformed progeny can be recovered from chimeric plants regenerated from Agrobacterium tumefaciens treated embryonic axes of sunflower. In: Bonari E, Galoppini C, Gambogi P, Panattoni A, Trimarchi G (eds) Proceedings of the 13th International Sunflower Conference, Pisa, Italy, vol 2, University of Pisa, Pisa, pp 1408–1411

    Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic and densipolic acid in seeds of transgenic arabidopsis plants that express a fatty acyl hydrolase cDNA from castor bean. Plant Physiol 113:933–942

    Article  PubMed  CAS  Google Scholar 

  • Burnett L, Amoldo M, Yarrow S, Huang B (1994) Enhancement of shoot regeneration from cotyledon expiants of Brassica rapa ssp. oleifera through pre-treatment with auxin and cytokinin and used of ethylene inhibitors. Plant Cell Tissue Organ Cult 37:253–256

    CAS  Google Scholar 

  • Burrus M, Bronner R, Hahne G (1993) Shoot regeneration from sunflower: a histological study. Biotechnology 7:126–128

    Google Scholar 

  • Burrus MJ, Molinier C, Himber C, Hunold R, Bronner R, Rousselin P, Hahne G (1996) Agrobacteriu m -mediated transformation of sunflower (Helianthus annuus L.) shoot apices: transformation patterns. Mol Breed 2:329–338

    Article  CAS  Google Scholar 

  • Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA 96:12935–12940

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high level of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141

    Article  CAS  Google Scholar 

  • Cartea ME, Migdal M, Galle AM, Pelletier G, Guerche P (1998) Comparison of sense and anti-sense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed. Plant Science 136:181–194

    Article  CAS  Google Scholar 

  • Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium mediated transformation of thin cell layer expiants from Brassica napus. Theor Appl Genet 75:438–445

    Article  Google Scholar 

  • Charest PJ, Iyer VN, Brian LM (1989) Virulence of Agrobacterium tumefaciens strains with Brassica napus and Brassica juncea. Plant Cell Rep 8:303–306

    Article  Google Scholar 

  • Charriere F, Hahne G (1998) Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Sci 137:63–71

    Article  CAS  Google Scholar 

  • Chen JL, Beversdorf WD (1994) A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency in canola (Brassica napus L.). Theor Appl Genet 88:187–192

    Google Scholar 

  • Cho MJ, Jiang W, Lemaux PG (1999) High-frequency transformation of oat microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci 148:9–17

    Article  CAS  Google Scholar 

  • Christey MC, Sinclair BK, Braun RH (1997) Regeneration of transgenic vegetable Brassicas (Brassica olerácea and B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Article  CAS  Google Scholar 

  • Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in Eubacteria. J Bacteriol 179: 3085–3094

    PubMed  CAS  Google Scholar 

  • Christou P (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilising particle bombardment. Euphytica 85:13–27

    Article  Google Scholar 

  • Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35:197–203

    Article  PubMed  CAS  Google Scholar 

  • Christou P, McCabe DE (1992) Prediction of germ-line transformation events in chimeric RO transgenic soybean plantlets using tissue-specific expression patterns. Plant J 2:283–290

    Article  CAS  Google Scholar 

  • Coughlan S, Hastings C, Hazebroek J, Scelonge C (1999) Production of transgenic sunflower with altered fatty acid profiles. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake, CA http://www.msu.edu/user/ohlrogge/Abstracts99z.html

    Google Scholar 

  • Damgaard O, Jensen LH, Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6:279–288

    Article  CAS  Google Scholar 

  • De Block M (1993) The cell biology of plant transformation: current state, problems, prospects and the implications for the plant breeding. Euphytica 71:1–14

    Article  Google Scholar 

  • De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in transgenic plants. Plant Physiol 91:694–701

    Article  PubMed  Google Scholar 

  • De la Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1. http://www.ejb.org

    Google Scholar 

  • De Ropp RS (1946) The isolation and behaviour of bacteria-free crown-gall tissue from primary galls of Helianthus annuus. Phytopathology 37:201–206

    Google Scholar 

  • Deglene L, Lesignes P, Alibert G, Sarrafi A (1997) Genetic control of organogenesis in cotyledons of sunflower (Helianthus annuus L.). Plant Cell Tissue Organ Cult 48:127–130

    Article  Google Scholar 

  • Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Dunwell JM (1998) Novel food products from genetically modified crop plants: methods and future prospects. Food Sci Technol 33:205–213

    CAS  Google Scholar 

  • Elliot AR, Campbell JA, Dugdale B, Brettell RIS, Grof CPL (1999) Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells. Plant Cell Rep 18:707–714

    Article  Google Scholar 

  • Everett NP, Robinson KEP, Mascarenhas D (1987) Genetic engineering of sunflower (Helianthus annuus L.). Biotechnology 5:1201–1204

    Article  CAS  Google Scholar 

  • Fiore MC, Trabace T, Sunseri F (1997) High frequency of plant regeneration in sunflower from cotelydons via somatic embryogenesis. Plant Cell Rep 16:295–298

    CAS  Google Scholar 

  • Fischer C, Klethi P, Hahne G (1992) Protoplasts from cotyledon, hypocotyl of sunflower (Helianthus annuus L.): shoot regeneration and seed production. Plant Cell Rep 11:632–636

    Article  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Santord JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    CAS  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Santord JC (1992) Virus resistant papaya plants derived from tissues bombardment with the coat protein gene of papaya ring spot virus. Biotechnology 10:1466–1472

    Article  CAS  Google Scholar 

  • Friedt W (1992) Present state and future prospects of biotechnology in sunflower breeding In: Seiler G (ed) Field crops research (vol 30). Elsevier, Amsterdam, pp 425–442

    Google Scholar 

  • Friedt W, Lühs W (1998) Recent developments and perspectives of industrial rapeseed breeding. Fett/Lipid 100:219–226

    Article  CAS  Google Scholar 

  • Friedt W, Lühs W (1999) Breeding of rapeseed (Brassica napus) for modified seed quality: synergy of conventional and modern approaches. In: Wratten N, Salisbury BA (eds) Proceedings of the 10th International Rapeseed Congress, 26–29 Sept, GCICRC, Canberra, Australia, p 76

    Google Scholar 

  • Friedt W, Nurhidayah T, Röcher T, Köhler H, Bergmann R, Horn R (1997) Haploid production and application of molecular methods in sunflower (Helianthus annuus L.). In: Jain SM (eds) In vitro haploid production in higher plants. Kluwer, Amsterdam: pp 17–35

    Chapter  Google Scholar 

  • Froman B, Edwards P, Byrne J, Colburn S, Dehesh K (1999) Molecular, biochemical and structural analysis of transgenic Brassica seeds producing significant levels of medium chain fatty acids. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake Calif. http://www.msu.edu/user/ohlrogge/Abstracts99z.html

    Google Scholar 

  • Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium based vectors. Plant Cell Rep 6:321–325

    Article  CAS  Google Scholar 

  • Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328

    Article  CAS  Google Scholar 

  • Furth PA (1997) Gene transfer by biolistic process. Mol Biotechnol 7:139–143

    Article  PubMed  CAS  Google Scholar 

  • Goldsborough PB, Gelvin SB, Larkinsba (1986) Expression of maize gene in transformed sunflower cells. Mol Gen Genet 202:374–381

    Article  Google Scholar 

  • Grayburn WS, Vick BA (1995) Transformation of sunflower (Helianthus annuus L.) following wounding with glass beads. Plant Cell Rep 14:285–289

    Article  CAS  Google Scholar 

  • Gurel E, Kazan K (1999) Development of an efficient plant regeneration system in sunflower (Helianthus annuus L.). Turk J Bot 22:381–387

    Google Scholar 

  • Hahne G (1994) Sunflower. In: Wang K, Herrera-Estrella A, Van Montagu M (eds) Transformation of plants and soil microorganism. Cambridge University, Cambridge, pp 137–145

    Google Scholar 

  • Hahne G (2000) Sunflower. In: Hui YH, Khatchtourians GG, McHughen A, Nip WK, R Scorza (eds) Handbook of transgenic plants. Dekker, New York (in press)

    Google Scholar 

  • Harwood WA, Bean SJ, Chen DF, Mullineaux PM, Snape JW (1995) Transformation studies in Hordeum vulgare using a highly regenerable microspore system. Euphytica 85:113–118

    Article  Google Scholar 

  • Hawkins DJ, Kridl JC (1998) Characterisation of acyl-ACP thioesterases of mangosteen (Garcinia manostana) seed and high levels of stearate production in transgenic canola. Plant J 13:743–752

    Article  PubMed  CAS  Google Scholar 

  • Heatley ME, Smith RH (1996) Whole plant regeneration from the shoot apex of Arachis hypogaea L. In Vitro Cell Dev Biol Plant 32:115–118

    Google Scholar 

  • Helmer G, Casadaban M, Bevan M, Kayes L, Chilton M (1984) A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli ß-galactosidase in sunflower and tobacco cells. Biotechnology 2:520–527

    Article  CAS  Google Scholar 

  • Henzi MX, Christey MC, McNeil DL, Davies KM (1999) Agrobacterim rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an anti-sense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci 143:55–62

    Article  CAS  Google Scholar 

  • Hitz WD, Yadav NS, Reiter RS, Mauvais CJ, Kinney AJ (1995) Reducing polyunsaturation in oils of transgenic canola and soybean. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Amsterdam, pp 506–508

    Chapter  Google Scholar 

  • Holbrook LA, Miki BL (1985) Brassica crown gall tumorigenesis and in vitro transformed tissue. Plant Cell Rep 4:329–332

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholz D, Rogers SG, Fraley RT (1985) A simple method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang YS, Liu JW, Mukerji P, Knutzon D (1999) Characterisation of genetically-transformed canola seed oil as an economical source of γ-linolenic acid. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake, Calif. http://www.msu.edu/user/ohlrogge/Abstracts99z.html

    Google Scholar 

  • Hunold R, Bronner R, Hahne G (1993) GUS expression in sunflower following microprojectile bombardment. Biotechnology 7:91–95

    Google Scholar 

  • Hunold R, Burrus M, Bronner R, Duret JP, Hahne G (1995) Transient gene expression in sunflower (Helianthus annuus L.) following microprojectile bombardment. Plant Sci 105:95–109

    Article  CAS  Google Scholar 

  • Ivanov P, Encheva J, Ivanova I (1998) A protocol to avoid precocious flowering of sunflower plantlets in vitro. Plant Breed 117:582–584

    Article  Google Scholar 

  • Jaehne A, Becker D, Brettschneider R, Loerz H (1994) Regeneration of transgenic mi-crospore-derived fertile barley. Theor Appl Genet 89:525–533

    Google Scholar 

  • Jaehne A, Becker D, Loerz H (1995) Genetic engineering of cereal crop plants: a review. Euphytica 85:35–44

    Article  CAS  Google Scholar 

  • James C (1998) Global status of transgenic crops in 1997. ISAAA brief No 5, International Service for the Acquisition of Agri-biotech Applications, Ithaca, p 31

    Google Scholar 

  • James C, Krattiger AF (1996) Global Review of the Field Testing and Commercialisation of Transgenic Plants, 1986 to 1995: The First Decade of Crop Biotechnology. ISAAA brief No 1, International Service for the Acquisition of Agri-biotech Applications, Ithaca, p 31

    Google Scholar 

  • Jeannin G, Bronner R, Hahne G (1993) Early cytological discrimination between organogenesis and somatic embryogenesis induced on immature zygotic embryos of sunflower (Helianthus annuus L.). Biotechnology 7:96–99

    Google Scholar 

  • Jeannin G, Bronner R, Hahne G (1995) Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annuus L.) cultivated in vitro: role of the sugar. Plant Cell Rep 15:200–204

    CAS  Google Scholar 

  • Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioseste-rase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371

    PubMed  CAS  Google Scholar 

  • Jun IJ, Kwon SY, Paek KY, Paek KH (1995) Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage (Brassica campestris ssp. pekinensis cv “spring flavor”). Plant Cell Rep 14:620–625

    Article  CAS  Google Scholar 

  • Kar S, Johnson TM, Nayak P, Sen SK (1996) Efficient transgenic plant regeneration through Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.). Plant Cell Rep 16:32–37

    Article  CAS  Google Scholar 

  • Kinney JK (1998) Plants as industrial factories new oils from genetically engineered soybeans. Fett/Lipid 100:173–176

    Article  CAS  Google Scholar 

  • Klein TM, Zhang W (1994) Progress in the genetic transformation of recalcitrant crop species. Ann Appl Biol 39:35–44

    Google Scholar 

  • Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S (1992) Transformation of microbes, plants and animals by particle bombardment. Biotechnology 10:286–291

    Article  PubMed  CAS  Google Scholar 

  • Knittel N, Gruber V, Hahne G, Lenee P (1994) Transformation of sunflower (Helianthus annuus L.): a reliable protocol. Plant Cell Rep 14:81–86

    CAS  Google Scholar 

  • Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by anti-sense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89:2624–2628

    Article  PubMed  CAS  Google Scholar 

  • Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA (1999) Lysophos-phatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapessed oil and can increase total laurate levels. Plant Physiol 120:739–746

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organisation in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Leduc N, Sautter C, Potrykus I, Neuhaus G (1996) Transient marker gene expression during zygotic in vitro embryogenesis of Brassica juncea (Indian mustard) following particle bombardment. Planta 198:211–220

    Article  CAS  Google Scholar 

  • Krasnyanski S, Menczel L (1993) Somatic embryogenesis and plant regeneration from hypocotyl protoplasts of sunflower (Helianthus annuus L.). Plant Cell Rep 12:260–263

    Article  CAS  Google Scholar 

  • Kräuter R, Steinmetz A, Friedt W (1991) Efficient interspecific hybridisation in the genus Helianthus via “embryo rescue” and characterisation of the hybrids. Theor Appl Genet 82:521–525

    Article  Google Scholar 

  • Kuvshinov V, Koivu K, Kanerva A, Pehu E (1999) Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp. oleífera. Plant Cell Rep 18:773–777

    Article  CAS  Google Scholar 

  • Laparra H, Burrus M, Hunold R, Damm B, Bravo-Angel A-M, Bronner R, Hahne G (1995) Expression of foreign genes in sunflower (Helianthus annuus L.) — evaluation of three gene transfer methods. Euphytica 85:63–74

    Article  CAS  Google Scholar 

  • Lassner MW, Levering CK, Davies HM, Knutzon DS (1995) Lysophosphatidic acid acyltransferase from meadowfoam mediated insertion of erucic acid at the sn-2 position of triacylglycerol in transgenic rapeseed oil. Plant Physiol 109:1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Lim HAT, You YS, Park EJ, Song YN, Park HK (1998) High plant regeneration, genetic stability of régénérants, and genetic transformation of herbicide resistance gene (bar) in Chinese cabbage (Brassica campestris ssp. pekinensis). Brassica 97:199–208

    Google Scholar 

  • Ling H-Q, Krieseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17:843–847

    Article  CAS  Google Scholar 

  • Luthra R, Varsha, Dubey RK, Srivastava AK, Kumar S (1997) Microprojectile mediated plant transformation: a bibliographic search. Euphytica 95:269–294

    Article  CAS  Google Scholar 

  • Malone-Schoeneberg RS, Bidney D, Scelonge C, Burrus M, Martich J (1991) Recovery of stable transformants from Agrobacterium tumefaciens treated split shoot axes. In Vitro Cell Dev Biol 27:152

    Google Scholar 

  • Martínez de Ilárduya O, Mekhedov S, Ohlrogge J (1999) A survey of genes for plant glycerolipid biosynthesis, http://www.msu.edu/user/ohlrogge/test/index.html

    Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • Matzke MA, Susani M, Binns AN, Lewis ED, Rubenstein I, Matzke AJM (1984) Transcription of a zein gene introduced into sunflower using Ti plasmid vector. EMBO J 3:1525–1531

    PubMed  CAS  Google Scholar 

  • Mekhedov S, Martínez de Ilárduya O, Ohlrogge I (1999) Towards the functional catalogue of plant genes: a survey of genes for plant glycerolipid biosynthesis. Symposium of the National Plant Lipid Cooperative (NPLC), June 9–13, Fallen Leaf Lake, CA. http://www.msu.edu/user/ohlrogge/Abstracts99z.html

    Google Scholar 

  • Metz PLJ, Nap JP (1997) A transgene-centred approach to the biosafety of transgenic plants: overview of selection and reporter genes. Acta Bot Neerl 46:25–50

    CAS  Google Scholar 

  • Molinier J, Hahne G (1998) Modification of seed oil composition in sunflower by genetic engineering. In: Bervillé A, Tersac M (eds) Proceedings of 4th European Conference on Sunflower Biotechnology, 20–23 Oct, INRA, Montpellier, France, p 44

    Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8, 238–242

    Article  CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumine gene. Proc Natl Acad Sci USA 94:8393–8398

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Schuster C, Iser M, Fürst S, Jach M, Hess D (1998) Regeneration from different explants of sunflower (Helianthus annuus L.) and first transformation experiments. In: Bervillé A, Tersac M (eds) Proceedings of 4th European Conference on Sunflower Biotechnology, 20–23 Oct. INRA, Montpellier, France, p 63

    Google Scholar 

  • Murai N, Sutton D, Murray M, Slighton J, Merlo D, Reichert N, Sengupta-Gopalan C, Sock C, Barker R, Kemp J, Hall T (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor inducing plasmid vectors. Science 222:476–481

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (1996) Engineering oil production in rapeseed and other oil crops. Trends Biotechnol 14:206–213

    Article  CAS  Google Scholar 

  • Murphy DJ (1999) Production of novel oils in plants. Curr Opin Biotechnol 10:175–180

    Article  PubMed  CAS  Google Scholar 

  • Nestares G, Zorzoli R, Mroginski L, Picard L (1998) Cytoplasmic effects on the regeneration ability of sunflower. Plant Breed 117:188–190

    Article  Google Scholar 

  • Nuhridayah T, Horn R, Röcher T, Friedt W (1997) High regeneration rates in anther culture of interspecific sunflower hybrids. Plant Cell Rep 16:167–173

    Google Scholar 

  • Ohlrogge JB (1994) Design of new plant products: engineering of fatty acid metabolism. Plant Physiol 104:821–826

    PubMed  CAS  Google Scholar 

  • Ohlrogge JB, Browse J, Somerville CR (1991) The genetics of plant lipids. Biochim Biophys Acta 1082:1–26

    Article  PubMed  CAS  Google Scholar 

  • Ono Y, Takahata Y, Kaizuma N (1994) Effect of genotype on shoot regeneration from cotyledonary expiants of rapeseed (Brassica napus L.). Plant Cell Rep 14:13–17

    Article  CAS  Google Scholar 

  • Ooms G, Bains A, Burrell M, Karp A, Wilcow E (1985) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium. Theor Appl Genet 71:325–329

    Google Scholar 

  • Parihar DS, Maheshwari SC, Khurana P (1995) High frequency somatic embryogenesis and plantlet regeneration from hypocotyl protoplast cultures of Brassica napus. Plant Cell Tissue Organ Cult 42:113–115

    Article  Google Scholar 

  • Paul S, Sikdar SR (1999) Expression of nptII marker and gus genes and their inheritance in subsequent generations of transgenic Brassica developed through Agrobacterium-mediated gene transfer. Curr Sci 76:1569–1573

    CAS  Google Scholar 

  • Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30

    Article  PubMed  CAS  Google Scholar 

  • Pechan PM (1989) Successful co-cultivation of Brassica napus microspores and proem-bryos with Agrobacterium. Plant Cell Rep 8:387–390

    Article  Google Scholar 

  • Peerbolte R, Dek GJ, Remijn E, De Beule P (1995) Transgenic sunflowers from the lab into the field. In: Friedt W, Horn R (eds) Proceedings of the third European Conference on Sunflower Biotechnology, 30 Oct-2 Nov, Bad Münster am Stein, Germany. Justus-Liebig-University of Giessen, Germany, p 25

    Google Scholar 

  • Pollard MR, Anderson L, Fan C, Hawkins DJ, Davies HM (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch Biochem Biophys 284: 306–312

    Article  PubMed  CAS  Google Scholar 

  • Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed 115:209–225

    Article  CAS  Google Scholar 

  • Prieto-Dapena P, Almoguera C, Rojas A, Jordano J (1999) Seed specific expression patterns and regulation by ABI3 of an unusual late embryogenesis abundant gene in sunflower. Plant Mol Biol 39:615–627

    Article  PubMed  CAS  Google Scholar 

  • Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467–474

    Article  CAS  Google Scholar 

  • Pua EC, Lee JEE (1995) Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta 96:69–76

    Google Scholar 

  • Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl expiants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15:685–690

    Article  CAS  Google Scholar 

  • Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of reintroduced napin gene. Theor Appl Genet 75:685–694

    Article  CAS  Google Scholar 

  • Rieseberg LH, Arias DM, Ungerer MC, Lindner CR, Sinervo B (1996) The effects of mating design on introgression between chromosomally divergent sunflower species. Theor Appl Genet 93:633–644

    Article  CAS  Google Scholar 

  • Sankara Rao K, Rohini VK (1999) Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): a simple protocol. Ann Bot 83:347–354

    Article  Google Scholar 

  • Sarrafi A, Roustan JP, Fallot J, Alibert G (1996) Genetic analysis of organogenesis in the cotelydons of sunflower (Helianthus annuus L.). Theor Appl Genet 92:225–229

    Article  Google Scholar 

  • Schaeffer HJ, Forsthoefel NR, Cushman JC (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28:205–218

    Article  PubMed  CAS  Google Scholar 

  • Schaffert E, Wallbraun M, Möllers C (1996) A culture medium for improved Agrobacterium-mediated transformation of Brassica napus L. Proceedings of the Eucarpia Symposium on the Breeding of Oil and Protein Crops, 5–8 Aug, Zaporozhye, Ukraine, EUCARPIA, pp 227–232

    Google Scholar 

  • Schrammeijer B, Sijmons PC, Van den Elzen PJM, Hoekema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep 9:55–60

    Article  CAS  Google Scholar 

  • Scorza R, Cordts JM, Ramming DW, Emershad RL (1995) Transformation of grape (Vitis vinifera) zygotic derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep 14:589–592

    Article  CAS  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    PubMed  CAS  Google Scholar 

  • Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K (1996) Effects of various factors (hormone combinations, genotypes and antibiotics) on shoot regeneration from cotyledon expiants in Brassica rapa L. Plant Tissue Cult Lett 13:177–180

    Article  CAS  Google Scholar 

  • Töpfer R, Martini M, Schell J (1995) Modification of plant lipid synthesis. Science 268:681–686

    Article  PubMed  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1989) Construction of an intron containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Google Scholar 

  • Vischi M, Marchetti S, Vannozzi GP, Olivieri AM (1996) Gene transfer in sunflower: comparison of different techniques. Proceedings 14th International Sunflower Conference: Biotechnology and Wild Species, Beijing, China, pp 1015–1020

    Google Scholar 

  • Vischi M, Marchetti S, Quagliaro G, Olivieri AM (1999) A focusing device for biolistic transformation of sunflower (Helianthus annuus L.) cotyledons. Helia 22:71–80

    Google Scholar 

  • Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke S E, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72–74

    Article  PubMed  CAS  Google Scholar 

  • Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9:229–241

    Article  CAS  Google Scholar 

  • Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–667

    Article  PubMed  CAS  Google Scholar 

  • Waiden R, Wingender R (1995) Gene-transfer and plant-regeneration techniques. Trends Biotechnol 13:324–331

    Article  Google Scholar 

  • Weber S (1998) Genetische Transformation der Sonnenblume (Helianthus annuus L.) fur eine gezielte Veränderung des Fettsäuremusters. Vortr Pflanzenzüchtg 43:265–269

    Google Scholar 

  • Weber S, Lühs W, Friedt W (1995) Application of microspore culture in Brassica napus crosses involving resynthesized rapeseed. Eucarpia Cruciferae Newslett 17:40–41

    Google Scholar 

  • Weber S, Horn R, Friedt W (1998a) Optimierung der Agrobacterium tumefaciens vermittelten Transformation bei der Sonnenblume (Helianthus annuus L.). Vortr Pflanzenzüchtg 42:134–136

    Google Scholar 

  • Weber S, Horn R, Friedt W (1998b) Improvement of sunflower transformation: the use of macerating enzymes. In: Bervillé A, Tersac M (eds) 4th European Conference on Sunflower Biotechnology, 20–23 Oct. INRA, Montpellier, France, p 34

    Google Scholar 

  • Weber S, Horn R, Friedt W (2000a) Introgression of high regeneration potential in vitro into cultivated sunflower (Helianthus annuus L.) by interspecific hybridization. Euphytica (in press)

    Google Scholar 

  • Weber S, Landes N, Etz P, Franke D, Horn R, Friedt W (2000b) Improvement of Agrobac-terium-mediated shoot tip transformation in sunflower. Proceedings of the 15th International Sunflower Conference, 12–16 June, Toulouse, France (in press)

    Google Scholar 

  • Weier D, Hanke C, Eickelkamp A, Lühs W, Dettendorfer J, Schaffert E, Möllers C, Friedt W, Wolter FP, Frentzen M (1997) Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L.). Fett/Lipid 99: 160–165

    Article  CAS  Google Scholar 

  • Weier D, Lühs W, Dettendorfer J, Frentzen M (1998) sn-l-Acyl-glycerol-3-phosphate acyltransferase of Escherichia coli causes insertion of cis-11 eicosenoic acid into the sn-2 position of transgenic rapeseed oil. Mol Breed 4:39–46

    Article  CAS  Google Scholar 

  • White TC, Simmonds D, Donaldson P, Singh J (1994) Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiol 106:917–928

    Article  PubMed  CAS  Google Scholar 

  • Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185

    Article  CAS  Google Scholar 

  • Zarhloul MK, Friedt W, Khoschkhoi-Yazdi MR, Lühs W (1999a) Genetic transformation and shoot regeneration ability of resynthesised Brassica napus line “RS306”. Eucarpia Cruciferae Newslett 21:59–60

    Google Scholar 

  • Zarhloul MK, Lühs W, Ehemann AS, Hausmann L, Friedt W, Töpfer R (1999b) Molecular Approaches to the biosynthesis of medium-chain triacylglycerols in Brassica napus. In: Wratten N, Salisbury BA (eds) Proceedings of the 10th International Rapeseed Congress, 26–29 Sept, GCICRC, Canberra, Australia, p 189

    Google Scholar 

  • Zhang FL, Takayata Y, Xu JB (1998) Medium and genotype factors influencing shoot regeneration from cotyledonary expiants of Chinese cabbage (Brassica campestris L ssp. Pekinensis). Plant Cell Rep 17:780–786

    Article  CAS  Google Scholar 

  • Zou JT, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923

    Article  PubMed  CAS  Google Scholar 

  • Zupan JR, Zambryski P (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, S., Zarhloul, K., Friedt, W. (2001). Modification of Oilseed Quality by Genetic Transformation. In: Esser, K., Lüttge, U., Kadereit, J.W., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56849-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56849-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52378-6

  • Online ISBN: 978-3-642-56849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics