Skip to main content

Introns, Splicing and Mobility

  • Chapter
  • 631 Accesses

Part of the book series: Progress in Botany ((BOTANY,volume 62))

Abstract

Introns are found in the nucleus, in bacteria, in phages and in organelles. All known organellar introns can be classified into two distinct classes according to their structures and splicing pathways: group-I and group-II introns. However, it has to be noted that the distributions of both classes are not limited to organellar genomes. Both classes contain self-splicing introns. Furthermore, some of the introns are mobile. Group-II introns are remarkable because their splicing mechanism resembles that of nuclear pre-messenger RNA (mRNA) introns and because of their much more complex mobility pathway than group-I introns. Also, in contrast to group-I introns, the mobility of group-II introns is strongly linked to their biological role as introns (i.e., splicing). Here, we review recent findings regarding the splicing, distribution and mobility of group-II introns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arlt H, Steglich G, Perryman R, Guiard B, Neupert W, Langer T (1998) The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO J 17:4837–4847

    Article  PubMed  CAS  Google Scholar 

  • Atkin AL, Altamura N, Leeds P, Culbertson MR (1995) The majority of yeast UPF1 co-localizes with polyribosomes in the cytoplasm. Mol Biol Cell 6:611–625

    PubMed  CAS  Google Scholar 

  • Aubert D, Bisanz-Seyer C, Herzog M (1992) Mitochondrial rps14 is a transcribed and edited pseudogene in Arabidopsis thaliana. Plant Mol Biol 20:1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Augustin S, Müller MW, Schweyen RJ (1990) Reverse self-splicing of group II intron RNAs in vitro. Nature 343:383–386

    Article  PubMed  CAS  Google Scholar 

  • Beagley CT, Okada NA, Wolstenholme DR (1996) Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc Natl Acad Sci USA 93:5619–5623

    Article  PubMed  CAS  Google Scholar 

  • Begel O, Boulay J, Albert B, Dufour E, Sainsard-Chanet A (1999) Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol 19:4093–4100

    PubMed  CAS  Google Scholar 

  • Begu D, Mercado A, Farre JC, Moenne A, Holuigue L, Araya A, Jordana X (1998) Editing status of mat-r transcripts in mitochondria from two plant species: C-to-U changes occur in putative functional RT and maturase domains. Curr Genet 33:420–428

    Article  PubMed  CAS  Google Scholar 

  • Bergantino E, Carignani G (1990) Antibodies against a fused gene product identify the protein encoded by a group II yeast mitochondrial intron. Mol Gen Genet 223:249–257

    Article  PubMed  CAS  Google Scholar 

  • Brandt P, Unseld M, Eckert-Ossenkopp U, Brennicke A (1993) An rps14 pseudogene is transcribed and edited in Arabidopsis mitochondria. Curr Genet 24:330–336

    Article  PubMed  CAS  Google Scholar 

  • Bui DM, Gregan J, Jarosch E, Ragnini A, Schweyen RJ (1999) The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J Biol Chem 274:20438–20443

    Article  PubMed  CAS  Google Scholar 

  • Carignani G, Groudinsky O, Frezza D, Schiavon E, Bergantino E, Slonimski PP (1983) An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35:733–742

    Article  PubMed  CAS  Google Scholar 

  • Coetzee T, Herschlag D, Belfort M (1994) Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaper-ones. Genes Dev 8:1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplast cytochrome b-559 gene. EMBO J 10:433–442

    PubMed  CAS  Google Scholar 

  • Copertino DW, Christopher DA, Hallick RB (1991) A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution. Nucleic Acids Res 19:6491–6497

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Michel F (1999) Tight binding of the 5’ exon to domain I of a group II self-splicing intron requires completion of the intron active site. EMBO J 18:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Deme E, Jacquier A, Michel F (1997a) Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol 267:520–536

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Fontaine JM, Loiseaux-de Goer S, Michel F (1997b) A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J Mol Biol 274:353–364

    Article  PubMed  CAS  Google Scholar 

  • Cousineau B, Smith D, Lawrence-Cavanagh S, Mueller JE, Yang J, Mills D, Manias D, Dunny G, Lambowitz AM, Belfort M (1998) Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94:451–462

    Article  PubMed  CAS  Google Scholar 

  • Daniels DL, Michels WJ Jr, Pyle AM (1996) Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J Mol Biol 256:31–49

    Article  PubMed  CAS  Google Scholar 

  • Doolittle RF, Feng DF, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Q Rev Biol 64:1–30

    Article  PubMed  CAS  Google Scholar 

  • du Jardin P, Porteteile D, Harvengt L, Dumont M, Wathelet B (1994) Expression of in-tron-encoded maturase-like polypeptides in potato chloroplasts. Curr Genet 25:158–163

    Article  PubMed  Google Scholar 

  • Eickbush TH (1999) Mobile introns: retrohoming by complete reverse splicing. Curr Biol 9:R11-R14

    Article  PubMed  CAS  Google Scholar 

  • Ems SC, Morden CW, Dixon CK, Wolfe KH, De Pamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733

    Article  PubMed  CAS  Google Scholar 

  • Eskes R, Yang J, Lambowitz AM, Perlman PS (1997) Mobility of yeast mitochondrial group II introns: engineering a new site specificity and retrohoming via full reverse splicing. Cell 88:865–874

    Article  PubMed  CAS  Google Scholar 

  • Ferat JL, Michel F (1993) Group II self-splicing introns in bacteria. Nature 364:358–361

    Article  PubMed  CAS  Google Scholar 

  • Ferat JL, Le Gouar M, Michel F (1994) Multiple group II self-splicing introns in mobile DNA from Escherichia coli. C R Acad Sci III 317:141–148

    Google Scholar 

  • Fontaine JM, Rousvoal S, Leblanc C, Kloareg B, Loiseaux-De Goer S (1995) The mitochondrial LSU rDNA of the brown alga Pylaiella littoralis reveals α-proteobacterial features and is split by four group IIB introns with an atypical phylogeny. J Mol Biol 251:378–389

    Article  PubMed  CAS  Google Scholar 

  • Fontaine JM, Goux D, Kloareg B, Loiseaux-De Goer S (1997) The reverse-transcriptase-like proteins encoded by group II introns in the mitochondrial genome of the brown alga Pylaiella littoralis belong to two different lineages which apparently coevolved with the group II ribosyme lineages. J Mol Evol 44:33–42

    Article  PubMed  CAS  Google Scholar 

  • Giege P, Knoop V, Brennicke A (1998) Complex II subunit 4 (sdh4) homologous sequences in plant mitochondrial genomes. Curr Genet 34:313–317

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk A, Tang J, Puig O, Salgado J, Neubauer G, Colot HV, Mann M, Seraphin B, Rosbash M, Luhrmann R, Fabrizio P (1998) A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA 4:374–393

    PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Zimmerly S, Perlman PS, Lambowitz AM (1997) Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J 16:6835–6848

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Hoch B, Zeitz P, Hübschmann T, Kössel H, Börner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465

    PubMed  CAS  Google Scholar 

  • Huang CC, Narita M, Yamagata T, Itoh Y, Endo G (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234:361–369

    Article  PubMed  CAS  Google Scholar 

  • Hübschmann T, Hess WR, Börner T (1996) Impaired splicing of the rps12 transcript in ribosome-deficient plastids. Plant Mol Biol 30:109–123

    Article  PubMed  Google Scholar 

  • Inouye S, Inouye M (1995) Structure, function, and evolution of bacterial reverse transcriptase. Virus Genes 11:81–94

    Article  PubMed  CAS  Google Scholar 

  • Jarrell KA, Dietrich RC, Perlman PS (1988a) Group II intron domain 5 facilitates a transsplicing reaction. Mol Cell Biol 8:2361–2366

    PubMed  CAS  Google Scholar 

  • Jarrell KA, Peebles CL, Dietrich RC, Romiti SL, Perlman PS (1988b) Group II intron self-splicing. Alternative reaction conditions yield novel products. J Biol Chem 263:3432–3439

    PubMed  CAS  Google Scholar 

  • Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296

    PubMed  CAS  Google Scholar 

  • Kenneil JC, Moran JV, Perlman PS, Butow RA, Lambowitz AM (1993) Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73:133–146

    Article  Google Scholar 

  • Knoop V, Kloska S, Brennicke A (1994) On the identification of group II introns in nucleotide sequence data. J Mol Biol 242:389–396

    Article  PubMed  CAS  Google Scholar 

  • Koch JL, Boulanger SC, Dib-Hajj SD, Hebbar SK, Perlman PS (1992) Group II introns deleted for multiple substructures retain self-splicing activity. Mol Cell Biol 12:1950–1958

    PubMed  CAS  Google Scholar 

  • Koehler CM, Jarosch E, Tokatlidis K, Schmid K, Schweyen RJ, Schatz G (1998) Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279:369–373

    Article  PubMed  CAS  Google Scholar 

  • Kück U (1989) Mitochondrial DNA rearrangements in Podospora anserina. Exp Mycol 13:111–120

    Article  Google Scholar 

  • Kulaeva OI, Koonin EV, Wootton JC, Levine AS, Woodgate R (1998) Unusual insertion element polymorphisms in the promoter and terminator regions of the mucAB-like genes of R471a and R446b. Mutat Res 397:247–262

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Perlman PS (1990) Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci 15:440–444

    Article  PubMed  Google Scholar 

  • Lambowitz AM, Perlman PS (1999) Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Laboratory, New York, pp 451–485

    Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Lazowska J, Meunier B, Macadre C (1994) Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co-conversion of upstream-located markers. EMBO J 13:4963–4972

    PubMed  CAS  Google Scholar 

  • Liere K, Link G (1995) RNA-binding activity of the matK protein encoded by the chloro-plast trnK intron from mustard (Sinapis alba L.). Nucleic Acids Res 23:917–921

    Article  PubMed  CAS  Google Scholar 

  • Maier UG, Rensing SA, Igloi GL, Maerz M (1995) Twintrons are not unique to the Euglena chloroplast genome: structure and evolution of a plastome cpn60 gene from a cryptomonad. Mol Gen Genet 246:128–131

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Abarca F, Zekri S, Toro N (1998) Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tcl/IS3 retroposon superfamily. Mol Microbiol 28:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Matsuura M, Saldanha R, Ma H, Wank H, Yang J, Mohr G, Cavanagh S, Dunny GM, Bel-fort M, Lambowitz AM (1997) A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev 11:2910–2924

    Article  PubMed  CAS  Google Scholar 

  • McClure MA (1991) Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol 8:835–856

    PubMed  CAS  Google Scholar 

  • Meunier B, Tian G-L, Macadre C, Slonimski PP, Lazowska J (1990) Group II introns transpose in mitochondria. In: Quagliariello E, Papa S, Palmieri F, Saccone C (eds) Structure, function and biogenesis of energy transfer systems. Elsevier Science, Amsterdam, pp 169–174

    Google Scholar 

  • Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns: a review. Gene 82:5–30

    Article  PubMed  CAS  Google Scholar 

  • Mills DA, McKay LL, Dunny GM (1996) Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol 178:3531–3538

    PubMed  CAS  Google Scholar 

  • Mills DA, Manias DA, McKay LL, Dunny GM (1997) Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J Bacteriol 179:6107–6111

    PubMed  CAS  Google Scholar 

  • Moenne A, Begu D, Jordana X (1996) A reverse transcriptase activity in potato mitochondria. Plant Mol Biol 31:365–372

    Article  PubMed  CAS  Google Scholar 

  • Mohr G, Perlman PS, Lambowitz AM (1993) Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res 21:4991–4997

    Article  PubMed  CAS  Google Scholar 

  • Moran JV, Mecklenburg KL, Sass P, Belcher SM, Mahnke D, Lewin A, Perlman P (1994) Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. Nucleic Acids Res 22:2057–2064

    Article  PubMed  CAS  Google Scholar 

  • Moran JV, Zimmerly S, Eskes R, Kennell JC, Lambowitz AM, Butow RA, Perlman PS (1995) Mobile group II introns of yeast mitochondrial DNA are novel site- specific retroelements. Mol Cell Biol 15:2828–2838

    PubMed  CAS  Google Scholar 

  • Mörl M, Schmelzer C (1990) Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell 60:629–636

    Article  PubMed  Google Scholar 

  • Mullany P, Pallen M, Wilks M, Stephen JR, Tabaqchali S (1996) A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174:145–150

    Article  PubMed  CAS  Google Scholar 

  • Müller MW, Allmaier M, Eskes R, Schweyen RJ (1993) Transposition of group II intron all in yeast and invasion of mitochondrial genes at new locations. Nature 366:174–176

    Article  Google Scholar 

  • Neuhaus H, Link G (1987) The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11:251–257

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: A mobile introns of a mitochondrial gene. Curr Genet 8:299–305

    Article  CAS  Google Scholar 

  • Peebles CL, Benatan EJ, Jarrell KA, Perlman PS (1987) Group II intron self-splicing: development of alternative reaction conditions and identification of a predicted intermediate. Cold Spring Harb Symp Quant Biol 52:223–232

    Article  PubMed  CAS  Google Scholar 

  • Perlman PS, Podar M (1996) Reactions catalyzed by group II introns in vitro. Methods Enzymol 264:66–86

    Article  PubMed  CAS  Google Scholar 

  • Podar M, Chu VT, Pyle AM, Perlman PS (1998) Group II intron splicing in vivo by first-step hydrolysis. Nature 391:915–918

    Article  PubMed  CAS  Google Scholar 

  • Sainsard-Chanet A, Begel O, Belcour L (1994) DNA double-strand break in vivo at the 3′ extremity of exons located upstream of group II introns. Senescence and circular DNA introns in Podospora mitochondria. J Mol Biol 242:630–643

    Article  PubMed  CAS  Google Scholar 

  • Saldanha R, Chen B, Wank H, Matsuura M, Edwards J, Lambowitz AM (1999) RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry 38:9069–9083

    Article  PubMed  CAS  Google Scholar 

  • Schäfer B, Merlos-Lange AM, Anderl C, Weiser F, Zimmer M, Wolf K (1991) The mitochondrial genome of fission yeast: inability of all introns to splice autocatalytically, and construction and characterization of an intronless genome. Mol Gen Genet 225:158–167

    Article  PubMed  Google Scholar 

  • Schmidt U, Sägebarth R, Schmelzer C, Stahl U (1993) Self-splicing of a Podospora anserina group IIA intron in vitro. Effects of 3′-terminal intron alterations on cleavage at the 5′ and 3′ splice site. J Mol Biol 231:559–568

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WM, Schweyen RJ, Wolf K, Müller MW (1994) Transposable group II introns in fission and budding yeast. Site- specific genomic instabilities and formation of group II IVS plDNAs. J Mol Biol 243:157–166

    Article  PubMed  CAS  Google Scholar 

  • Sellem CH, Lecellier G, Belcour L (1993) Transposition of a group II intron. Nature 366:176–178

    Article  PubMed  CAS  Google Scholar 

  • Seraphin B, Boulet A, Simon M, Faye G (1987) Construction of a yeast strain devoid of mitochondrial introns and its use to screen nuclear genes involved in mitochondrial splicing. Proc Natl Acad Sci USA 84:6810–6814

    Article  PubMed  CAS  Google Scholar 

  • Shearman C, Godon JJ, Gasson M (1996) Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol Microbiol 21:45–53

    Article  PubMed  CAS  Google Scholar 

  • Skelly PJ, Hardy CM, Clark-Walker GD (1991) A mobile group II intron of a naturally occurring rearranged mitochondrial genome in Kluyveromyces lactis. Curr Genet 20:115–120

    Article  PubMed  CAS  Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343

    Article  PubMed  CAS  Google Scholar 

  • Van Dyck L, Neupert W, Langer T (1998) The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 12:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Börner T, Hess WR (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res 27:3866–3874

    Article  PubMed  CAS  Google Scholar 

  • Wank H, SanFilippo J, Singh RN, Matsuura M, Lambowitz AM (1999) A reverse tran-scriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol Cells 4:239–250

    Article  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Yang J, Zimmerly S, Perlman PS, Lambowitz AM (1996) Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381:332–335

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mohr G, Perlman PS, Lambowitz AM (1998) Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity of all and reverse splicing into DNA transposition sites in vitro. J Mol Biol 282:505–523

    Article  PubMed  CAS  Google Scholar 

  • Yeo CC, Tham JM, Yap MW, Poh CL (1997) Group II intron from Pseudomonas alcalige-nes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis. Microbiology 143:2833–2840

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Derbyshire V, Salvo JL, Beifort M (1995) Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro. RNA 1:783–793

    PubMed  CAS  Google Scholar 

  • Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM (1995a) A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83:529–538

    Article  PubMed  CAS  Google Scholar 

  • Zimmerly S, Guo H, Perlman PS, Lambowitz AM (1995b) Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554

    Article  PubMed  CAS  Google Scholar 

  • Zimmerly S, Moran JV, Perlman PS, Lambowitz AM (1999) Group II intron reverse transcriptase in yeast mitochondria. Stabilization and regulation of reverse transcriptase activity by the intron RNA. J Mol Biol 289:473–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sägebarth, R., Stahl, U. (2001). Introns, Splicing and Mobility. In: Esser, K., Lüttge, U., Kadereit, J.W., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56849-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56849-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52378-6

  • Online ISBN: 978-3-642-56849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics