Skip to main content

The Existence of Bark and Stem Photosynthesis in Woody Plants and Its Significance for the Overall Carbon Gain. An Eco-Physiological and Ecological Approach

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 62))

Abstract

Leaves are expected to be green (although they are sometimes reddish in the so-called blood forms or yellowish in the so-called aurea forms). The colour-determining pigments, the chlorophylls, are the cause of the leaves’ global importance in photosynthetic carbon fixation. The fact that stems can also contain chlorophyll is not directly evident. The outer bark layers are mostly brown (oak) or grey (beech, aspen) or sometimes even white (birch). However, bark tissues of younger twigs of trees are regularly greenish. The green colour is not caused by a surface layer of algae colonizing the outer wet parts of rhytidomes. By carefully peeling off layers of the dead outer bark of twigs and branches, a green colour indicates the presence of chlorophyll-containing tissues. The fact that the tree’s skeleton partly consists of green tissue has been known for centuries by bark-peeling basket makers, bast producers and even lovers who cut hearts into tree bark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aichele H (1950) Der Temperaturgang rings um eine Esche. Allg Forst Jagdz 121:119–121

    Google Scholar 

  • Anderson RF (1960) Forest and shade tree entomology. Wiley, New York

    Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    PubMed  CAS  Google Scholar 

  • Bailey IN (1913) The preservation treatment of wood. II. The structure of the pith membranes in the tracheids of conifers and their relation to penetration of gases, liquids and finely divided solids into greened and seasoned wood. For Q 11:12–20

    Google Scholar 

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen

    Google Scholar 

  • Bazzaz FA, Wayne PM (1994) Coping with environmental heterogenity: the physiological ecology of tree seedling regeneration across the gap-understory continuum. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 349–390

    Google Scholar 

  • Bossard CC, Rejmanek M (1992) Why have green stems? Funct Ecol 6:197–205

    Google Scholar 

  • Boysen-Jensen P, Müller D (1927) Undersogelser over stofproduktionen i yngre bevolksninger of ask og bog. Det Forstl Forsogsv Danmark 9:221–268

    Google Scholar 

  • Braune W, Leman A, Taubert H (1991) Pflanzenanatomisches Praktikum I, 6th edn. Fischer, Jena

    Google Scholar 

  • Brayman AA, Schaedle M (1982) Photosynthesis and respiration of developing Populus tremuloides internodes. Plant Physiol 69:911–915

    PubMed  CAS  Google Scholar 

  • Buchel HB, Grosse W (1990) Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn. Tree Physiol 6:247–256

    PubMed  Google Scholar 

  • Butin H (1989) Krankheiten der Wald-und Parkbäume. Thieme, Stuttgart

    Google Scholar 

  • Cannon W (1905) On the transpiration of Fouqueria splendens. Bull Torrey Bot Club 32:397–414

    Google Scholar 

  • Cannon W (1908) The topography of the chlorophyll apparatus in desert plants. Carnegie Institute Publication 98. Carnegie Institute, Washington

    Google Scholar 

  • Cappelletti C (1934) Ricerche sulla respirazione del legne. Ann Bot 20:470–503

    Google Scholar 

  • Cappelletti C (1937) Sulla respirazione del legno ed i suoi rapporti con Lècologia delia pianta Versamenti di liquido dalle perforazioni del rusto e loro significata. Ann Bot 21:417–464

    Google Scholar 

  • Carrodus BB, Triffett ACK (1975) Analysis of respiratory gases in woody stems by mass spectrometry. New Phytol 74:243–246

    CAS  Google Scholar 

  • Chase WW (1934) The composition, quantity, and physiological significance of gases in tree stems. Technical Bulletin 99. University of Minnesota, Minneapolis

    Google Scholar 

  • Chattaway MM (1953) The anatomy of the bark. I. Aust J Bot 1:402–433

    Google Scholar 

  • Chattaway MM (1955) The anatomy of the bark. II, III. Aust J Bot 3:21–176

    Google Scholar 

  • Cooke GB (1948) Cork and cork products. Econ Bot 2:393–402

    CAS  Google Scholar 

  • Covington WW (1975) Altitudinal variation of chlorophyll concentration and reflectance of the bark of Populus tremuloides. Ecology 56:715–720

    CAS  Google Scholar 

  • DuRietz GE (1945) Om fattigbarkoch rikbarksamhällen. Svensk Bot Tidskr 39:147–150

    Google Scholar 

  • Edwards TE, Hanson PJ (1995) Stem respiration in closed-canopy upland oak forest. Tree Physiol 16:433–439

    Google Scholar 

  • Eklund L (1990) Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Trees Struct Funct 4:150–154

    Google Scholar 

  • Ellenberg H, Mayer R, Schauermann J (eds) (1986) Ökosystemforschung — Ergebnisse des Sollingprojektes 1966–86. Ulmer, Stuttgart

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  • Eschrich W (1995) Funktionelle Pflanzenanatomie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ewers FW, Fisher JB, Fichtner K (1991) Water flux and xylem structure in vines. In: Putz FE, Mooney HA (eds) The biology of vines, Cambridge University, Cambridge, pp 127–160

    Google Scholar 

  • Foote KC, Schaedle M (1976a) Diurnal and seasonal patterns pf photosynthesis and respiration by stems of Populus tremuloides Michx. Plant Physiol 58:651–655

    PubMed  CAS  Google Scholar 

  • Foote KC, Schaedle M (1976b) Physiological characteristics of photosynthesis and respiration in stems of Populus tremuloides Michx. Plant Physiol 58:91–94

    PubMed  CAS  Google Scholar 

  • Foote KC, Schaedle M (1978) The contribution of aspen bark photosynthesis to the energy balance of the stem. For Sci 24:569–573

    Google Scholar 

  • Gartner BL (ed) (1995) Plant stems: physiology and functional morphology. Academic Press, San Diego

    Google Scholar 

  • Geurten T (1950) Untersuchungen über den Gaswechsel von Baumrinden. Forstwiss Centralbl 69:704–753

    Google Scholar 

  • Gibson A (1983) Anatomy of photosynthetic old stems of nonsucculent dicotyledons from North American deserts. Bot Gaz 144:347–362

    Google Scholar 

  • Gill AM (1975) Fire and the Australian flora: a review. Aust For 38:4–25

    Google Scholar 

  • Gill AM (1995) Stems and fires. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 323–342

    Google Scholar 

  • Gill AM, Ashton DH (1968) Role of bark type in relative tolerance to fire of three central Victorian Eucalypts. Aust J Bot 16:491–498

    Google Scholar 

  • Givnish TJ (1995) Plants stems: biomechanical adaptation for energy capture and influence on species distribution. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 3–49

    Google Scholar 

  • Glase JC, Granet K (1978) Bark chlorophyll in the American beech (Fagus grandifolia) varies with bark aspect. Am Midland Nat 100:510–512

    Google Scholar 

  • Gomez-Vasques BG (1977) Anatomia de la madera y corteza de Bursera longipes y Bursera copallifera. Thesis. University of Morelos, Morelos

    Google Scholar 

  • Grosse W (1997) Gas transport of trees. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees-contributions to modern tree physiology. Backhuys, Leiden

    Google Scholar 

  • Gundersen K (1954) Chlorophyll in young shoots of European beech (Fagus sylvatica) in winter. Nature 174:87–88

    CAS  Google Scholar 

  • Hagihara A, Yamaji K (1993) Dimension relation of branches in Hinoki [Chamaecyparis obtusa (Sieb. Et Zuce) Endl.]. Bull Nagoya Univ For 12:1–10

    Google Scholar 

  • Hari P, Nygren P, Korpilahti E (1991) Internal circulation of carbon within a tree. Can J For Res 21:514–515

    CAS  Google Scholar 

  • Holdheide W (1951) Anatomie mitteleuropäischer Gehölzrinden. In: Freund H (ed) Handbuch der Mikroskopie in der Technik V. Part I. Umschau, Frankfurt

    Google Scholar 

  • Ingham ER, Moldenke AR (1995) Microflora and microfauna on stems and trunks. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 241–256

    Google Scholar 

  • Jacob A, Lehmann H, Stelzer R (1989) Entwicklung und Struktur von Lenticellen der Buche (Fagus sylvatica f. purpurea AIT). Flora 183:417–427

    Google Scholar 

  • Jahns HM (1995) Farne, Moose und Flechten Mittel- und Nordeuropas. BLV, München

    Google Scholar 

  • Johansson N (1933) Om förveddade stammars andning, dess fastställande och betydelse. Svenska Skogvardsför Tidskr 31,242–49

    Google Scholar 

  • Kaipiainen LK, Sofronova Gl, Hari P, Yalynskaya EE (1998) The role of xylem in CO2 exchange in Pinus sylvestris woody stems. Russ J Plant Physiol 45:587–593

    Google Scholar 

  • Kakubari Y (1988) Diurnal and seasonal fluctuations in the bark respiration of standing Fagus sylvatica trees at Soiling, West Germany. J Jpn For Soc 70:64–70

    Google Scholar 

  • Katz C, Oren R, Schulze E-D, Millburn JA (1989) Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees Struct Funct 3:33–37

    Google Scholar 

  • Kauppi A (1991) Seasonal fluctuations in chlorophyll content in birch stems with special reference to bark thickness and light transmission, a comparison between sprouts and seedlings. Flora 185:107–125

    Google Scholar 

  • Keller T (1973) CO2 exchange of bark of deciduous species in winter. Photosynthetica 7:320–324

    Google Scholar 

  • Ketskhoveli EN (1958) Change with time of the dynamics of chlorophyll in the bark of trees. Soobshcheniya Akad Nauk Gruzin SSR 21:179–181

    CAS  Google Scholar 

  • Kharouk VI, Middleton EM, Spencer SL, Rock BN, Williams DL (1995) Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimate in the boreal ecosystem. Water Air Soil Pollut 82:483–497

    CAS  Google Scholar 

  • Kinerson AS (1975) Relationships between plant surface area and respiration in loblolly pine. J Appl Ecol 12:965–971

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Kriedemann PE, Buttrose MS (1971) Chlorophyll content and photosynthetic activity within woody shoots of Vitis vinifera (L.). Photosynthetica 5:22–27

    CAS  Google Scholar 

  • Langenfeld-Heyser R (1989) CO2 fixation in stem slices of Picea abies (L.) Karst: microautoradiography studies. Trees Struct Funct 3:24–32

    Google Scholar 

  • Langenfeld-Heyser R (1997) Physiological functions of lenticels. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees-contributions to modern tree physiology. Backhuys, Leiden, pp 43–46

    Google Scholar 

  • Langenfeld-Heyser R, Schella B, Buschmann K, Speck F (1996) Microautoradiographic detection of CO2 fixation in lenticel chlorenchyma of young Fraxinus excelsior L. stems in early spring. Trees Struct Funct 10:255–260

    Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen: Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt, 5th edn. Ulmer, Stuttgart

    Google Scholar 

  • Larcher W, Lutz C, Nagele M, Bodner M (1988) Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagus sylvatica. J Plant Physiol 132:731–737

    CAS  Google Scholar 

  • Larsen P (1939) Regenererende Kulsyreassimilation hos askegrene. For Forsoegsvaesen Danmark 14:13–52

    Google Scholar 

  • Levy PE, Meir P, Allen SJ, Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol 19:53–58

    PubMed  Google Scholar 

  • Lieberum HJ (1961) Temperatur in stehenden Holzgewächsen. Thesis. University of Göttingen, Göttingen

    Google Scholar 

  • Liu K (1997) Können wässrige Lösungen über Lenticellen ins Sprossachseninnere gelangen? Untersuchungen im Winter. Thesis. University of Göttingen, Göttingen

    Google Scholar 

  • Liu R, Jiang F, Tian D (1992) Change of sulfur content in the bark and its application in monitoring the air sulfur dioxide pollution in winter. Acta Bot Sin 34:622–629

    CAS  Google Scholar 

  • Lüttge U, Kluge M, Bauer G (1997) Botanik, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Mägdefrau K, Wutz A (1961) Leichthölzer und Tonnenstämme in Scharzwassergebieten und Dornbuschwäldern des tropischen Südamerika. Forstwiss Centralbl 80:17–28

    Google Scholar 

  • Martin TA, Teskey RO, Dougherty PM (1994) Movement of respiratory CO2 in stems of loblolly pine (Pinus taeda L.) seedlings. Tree Physiol 14:481–495

    PubMed  Google Scholar 

  • Masuch G (1993) Biologie der Flechten. Quelle and Meyer, Stuttgart

    Google Scholar 

  • Mauseth JD (1995) Botany. Saunders College, Philadelphia

    Google Scholar 

  • MacDougal DT, Working EB (1933) The pneumatic system of plants, especially trees. Carnegie Institution Publication 441. Carnegie Institute, Washington

    Google Scholar 

  • Mirschkorsch C (1996) Die Stamm-und Zweigtranspiration eines jungen Fichtenbestandes (Picea abies L.Karst.) und die Bedeutung für den CO2-Netto-Austausch. Thesis, University of Bayreuth, Bayreuth

    Google Scholar 

  • Möller CM, Müller D, Nielsen J (1954) Respiration in stem and branches of beech. Forstl Forsogr Dan 21:273–301

    Google Scholar 

  • Monk CD (1966) An ecological significance for evergreens. Ecology 47:504–505

    Google Scholar 

  • Müller NJC (1898) Untersuchungen über Atmung und Energie in der Pflanze. Beitr Z Wiss Bot 2:2

    Google Scholar 

  • Muthuchelian K (1992) Photosynthetic characteristics of bark tissues of the tropical tree Bombax ceiba L. Photosynthetica 26:633–636

    CAS  Google Scholar 

  • Neger FW (1919) Ein neues untrügliches Merkmal für Rauchschäden bei Laubhölzern. Angew Bot 1:129–138

    Google Scholar 

  • Neger FW (1922) Beiträge zur Kenntnis des Baues und der Wirkungsweise der Lentizellen II. Berl Dtsch Bot Ges 40:306–313

    Google Scholar 

  • Neger FW, Kupka T (1920) Beiträge zur Kenntnis des Baues und der Wirkungsweise der Lenticellen I. Berl Dtsch Bot Ges 38:141–149

    Google Scholar 

  • Negisi K (1972) Diurnal fluctuation of CO2-release from the bark of a standing Magnolia obovata tree. J Jpn For Soc 54:257–263

    Google Scholar 

  • Negisi K (1974) Respiration rates in relation to diameter and age in stem or branch sections of young Pinus densiflora trees. Bull Tokyo Univ For 66:209–222

    Google Scholar 

  • Negisi K (1978) Daytime depression in bark respiration and radial shrinkage in stem of a standing Pinus densiflora tree. J Jpn For Soc 60:380–382

    Google Scholar 

  • Negisi K (1982) Diurnal fluctuations of the stem bark respiration in relationship to the wood temperature in standing young Pinus densiflora, Chamaecyparis obtusa and Quercus myrsinaefolia trees. J Jpn For Soc 64:315–319

    Google Scholar 

  • Nicolai V (1985) Die ökologische Bedeutung verschiedener Rindentypen bei Bäumen. Thesis. University of Marburg, Marburg

    Google Scholar 

  • Nicolai V (1986) The bark of trees: thermal properties, microclimate and fauna. Oecologia 69:148–160

    Google Scholar 

  • Nilsen ET (1995) Stem photosynthesis extent, patterns and role in plant carbon economy. In: Gartner B (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 223–240

    Google Scholar 

  • Nilsen ET, Bao Y (1990) The influence of water stress on stem and leaf photosynthesis in Glycine max and Sparteum junceum (Leguminosae). Am J Bot 77:1007–1015

    Google Scholar 

  • Nilsen ET, Meinzer FC, Rundel PW (1989) Stem photosynthesis in Psorothamnus spinosus (smoke tree) in the Sonoran Desert of California. Oecologia 79:193–197

    Google Scholar 

  • Nilsen ET, Karpa D, Mooney HA, Field C (1993) Patterns of stem photosynthesis in two invasive legumes (Spartium junceum, Cytisus scoparius) of the California coastal region. Am J Bot 800:1126–1136

    Google Scholar 

  • Nobel PS, Hartsock T (1986) Leaf and stem CO2 uptake in the three subfamilies of the Cactaceae. Plant Physiol 80:913–917

    PubMed  CAS  Google Scholar 

  • Oohata S, Shidei T (1972) Seasonal changes in respiratory rate of stems and their growth. Bull Kyoto Univ For 43:63–72

    Google Scholar 

  • Pearson IC, Lawrence DB (1958) Photosynthesis in aspen bark. Am J Bot 45:383–387

    CAS  Google Scholar 

  • Perry TO (1971) Winter-season photosynthesis and respiration by twigs and seedlings of deciduous and evergreen trees. For Sci 17:41–44

    Google Scholar 

  • Pfanz H (1994) Apoplastic and symplastic proton concentrations and their significance for metabolism. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin Heidelberg New York, pp 103–122

    Google Scholar 

  • Pfanz H (1999) Photosynthetic performance of twigs and stems of trees with and without stress. Phyton 39:29–33

    Google Scholar 

  • Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic gases. Plant Physiol 81:597–602

    PubMed  CAS  Google Scholar 

  • Pfanz H, Heber U (1989) Determination of extra- and intracellular pH values in relation to the action of acidic gases on cells. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis. New Series, vol 9. Gases in plant and microbial cells. Springer, Berlin Heidelberg New York, pp 322–343

    Google Scholar 

  • Pfanz H, Wobus A (1998) Belastungserscheinungen und Entwicklungsstrategien von Laubbäumen des Vorwaldes im immissionsbelasteten Freiland des Erzgebirges, unter simulierten Immissionsbedingungen in Open Top-Kammern und im Labor. In: Nebe W, Roloff A, Vogel M (eds) Contributions to forest science, vol 4. Tharandt, Dresden, pp 157–162

    Google Scholar 

  • Pfanz H, Lomsky B, Hällgren J-E (1998) How do SO2 and other air pollutants affect leaf and stem photosynthesis in trees? In: De Kok, LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 423–430

    Google Scholar 

  • Pilarski J (1984) Content of chlorophyllus pigments in shoot bark and leaves in Syringa vulgaris L. Bull Pol Acad Sci Biol Sci 32:415–423

    CAS  Google Scholar 

  • Pilarski J (1990) Photochemical activity of isolated chloroplasts from the bark and leaves of lilac (Syringa vulgaris L.). Photosynthetica 24:186–189

    Google Scholar 

  • Pilarski J (1993) Intensity of oxygen production in the process of photosynthesis in shoots and leaves of lilac (Syringa vulgaris L.). Acta Physiol Plant 15:249–256

    Google Scholar 

  • Prebeg T, Ljubesic N, Wrischer M (1999) Structural and physiological characteristics of the coloured tips of Leucojum petals. In: Vodnik D, Zel J (eds) 2nd Slovenian Symposium on Plant Physiology. University of Ljubljana, Slovenia Gozd Martuljek, p 62

    Google Scholar 

  • Romberger JA, Hejnowitz Z, Hill JF (1993) Plant structure: function and development. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ross H (1887) Beiträge zur Kenntnis des Assimilationsgewebes und der Korkentwicklung armlaubiger Pflanzen. Thesis. University of Freiburg, Freiburg

    Google Scholar 

  • Roth I (1981) Structural patterns of tropical barks. Handbuch der Pflanzenanatomie IX, vol 3. Borntraeger, Berlin

    Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon costs of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res 102:871–883

    Google Scholar 

  • Sakai A (1966) Temperature fluctuations in wintering trees. Physiol Plant 19:105–114

    Google Scholar 

  • Sandved KB, Prance GT, Prance AE (1993) Bark. The formation, characteristics, and uses of bark around the world. Timber Press, Portland

    Google Scholar 

  • Schaedle M (1975) Tree photosynthesis. Annu Rev Plant Physiol 26:101–115

    CAS  Google Scholar 

  • Schaedle M, Foote KC (1971) Seasonal changes in the photosynthetic capacity of Populus tremuloides bark. For Sci 17:309–313

    Google Scholar 

  • Schmidt J, Batic F, Pfanz H (2000) Photosynthetic performance of leaves and twigs of evergreen holly (Ilex aquifolium L.). Phyton 40:179–190

    Google Scholar 

  • Schneider CK (1903) Dendrologische Winterstudien. Fischer Jena

    Google Scholar 

  • Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin, and lipids. In: Lange OL, Nobel PL, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. Physiological plant ecology II, vol 12B. Springer, Berlin Heidelberg New York, pp 154–179

    Google Scholar 

  • Schultz HR, Matthews MA (1993) Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.) — evidence that low light uncouples water transport from leaf area. Planta 190:393–406

    Google Scholar 

  • Scott DG (1907) On the distribution of chlorophyll in the young shoots of woody plants. Ann Bot 21:437–439

    Google Scholar 

  • Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (1998) Lehrbuch der Botanik für Hochschulen -Strasburger E, 34th edn. Fischer, Stuttgart

    Google Scholar 

  • Solhaug KA, Gauslaa Y, Haugen J (1995) Adverse effects of epiphytic crustose lichens upon stem photosynthesis and chlorophyll of Populus tremula L. Bot Acta 108:233–239

    CAS  Google Scholar 

  • Sprugel DG, Benecke U (1991) Measuring woody-tissue respiration and photosynthesis. In: Lassoie JP, Hinckley TM (eds) Techniques and approaches in forest tree ecophysiology. CRC, Boca Raton, pp 329–355

    Google Scholar 

  • Srivastava LM (1964) Anatomy, chemistry, and physiology of bark. Int Rev For Res 1:203–277

    Google Scholar 

  • Steinborn WH, Eschenbach C, Kutsch WL, Kappen L (1997) CO2-Gaswechsel von Achsenorganen der Schwarzerle (Alnus glutinosa). Landschaftsentwicklung und Umweltforschung 107, Schriftenreihe FB Umwelt und Gesellschaft. Overdiek D, Forstreuther M (eds): 7–22

    Google Scholar 

  • Stahl E (1912) Die Blitzgefährdung der verschiedenen Baumarten. Fischer, Jena

    Google Scholar 

  • Strain BR, Johnson PL (1963) Corticolar photosynthesis and growth on Populus tremuloides. Ecology 44:581–584

    CAS  Google Scholar 

  • Tranquillini W, Schütz W (1970) Über die Rindenatmung einiger Bäume an der Waldgrenze. Centralbl Ges Forstwes 87:42–60

    Google Scholar 

  • Trockenbrodt M (1990) Survey and discussion of the terminology used in bark anatomy. IAWA Bull 11:141–166

    Google Scholar 

  • Vaucher H (1990) Barks bibliography 1975–1990. Bienne

    Google Scholar 

  • Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Google Scholar 

  • Wagner U (1990) Kinetik und Mechanismus der pH-Stabilisierung in grünen Blättern höherer Pflanzen. Thesis, University of Würzburg, Würzburg

    Google Scholar 

  • Waisel Y (1995) Development and functional aspects of the periderm. In: Iqbal M (ed) The cambial derivatives. Handbuch der Pflanzenanatomie IX, vol 4. Borntraeger, Berlin, pp 293–315

    Google Scholar 

  • Weber JA, Grulke NE (1995) Response of stem growth and function to air pollution. In: Gartner B (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 343–363

    Google Scholar 

  • Wiebe HH (1975) Photosynthesis in wood. Physiol Plant 332:45–46

    Google Scholar 

  • Wiebe HH, Al-Saadi HA, Kimball SL (1974) Photosynthesis in the anomalous secondary wood of Atriplex confertifolia stems. Am J Bot 61:444–448

    CAS  Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanism and environment. Elsevier, Amsterdam, pp 321–387

    Google Scholar 

  • Wirth V (1995) Flechtenflora — Bestimmung und ökologische Kennzeichnung der Flechten Südwestdeutschlands und angrenzender Gebiete, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • Wutz A (1955) Anatomische Untersuchungen über System und periodische Veränderungen der Lenticellen. Bot Stud 4:43–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfanz, H., Aschan, G. (2001). The Existence of Bark and Stem Photosynthesis in Woody Plants and Its Significance for the Overall Carbon Gain. An Eco-Physiological and Ecological Approach. In: Esser, K., Lüttge, U., Kadereit, J.W., Beyschlag, W. (eds) Progress in Botany. Progress in Botany, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56849-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56849-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52378-6

  • Online ISBN: 978-3-642-56849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics