Skip to main content

Climate System and Carbon Cycle Feedback

  • Chapter
Understanding the Earth System

Abstract

Ice core data show a strong correlation between atmospheric CO2 and global temperature over the glacial cycles, indicating that the climate system is closely coupled to the carbon cycle. During the four last glacial cycles, over the past 420,000 years, atmospheric CO2 had excursions from 200 ppmv during cold glacial periods, up to 280 ppmv during warm interglacial periods (Petit et al. 1999) (see fig. 1a). Other trace gases such as methane also show a strong temporal coupling with temperature over glacial cycles (Petit et al. 1999). Over the more recent history, atmospheric CO2 has been recorded to increase from roughly 280 ppmv at the dawn of the industrial revolution, up the 360 ppmv today (see fig. lb) (Etheridge et al. 1996). This sharp increase is due to a) the burning of fossil fuel for energy production (Andres et al. 1996) and b) the intense deforestation, essentially in the tropics, needed to meet the increasing food and fibre demand (Houghton 1995). Many forests have been cut or degraded, and today, a large fraction of the terrestrial ecosystems is directly influenced by human activities. Land use over the past 200 years has caused terrestrial ecosystems to release carbon (mainly to the atmosphere).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres RJ, Marland G, Fung I, Matthews E (1996) A one degree by one degree distribution of carbon dioxide emissions from fossil-fuel consumption and cement manufacture, 1950–1990. Glob Biogeochem Cycles 10: 419–429

    Article  Google Scholar 

  • Baldocchi D, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biol 3: 159–168

    Article  Google Scholar 

  • Battle M, Bender M, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287: 2467–2470

    Article  Google Scholar 

  • Bengtsson L, Roeckner E, Stendel M (1999) Why is global warming proceeding much slower than expected? J Geophys Res 104: 3865–3876

    Article  Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387: 796–799

    Article  Google Scholar 

  • Bonan GB (1997) Effects of land use on the climate of the United States. Climatic Change 37: 449–486

    Article  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effect of boreal forest vegetation on global climate. Nature 359: 716–718

    Article  Google Scholar 

  • Bousquet P, Ciais P, Peylin P, Monfray P (1999) Optimisation of annual atmospheric CO2 net sources and sinks using inverse modelling. Part 1: method and control inversion. J Geophys. Res 104: 26161–26178

    Article  Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393: 249–252

    Article  Google Scholar 

  • Chalita S, LeTreut H (1994) The albedo of temperate and boreal forest and the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM. Climate Dynamics 10: 231–240

    Article  Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Quart J R Met Soc 101: 193–202

    Article  Google Scholar 

  • Chase TN, Pielke RA, Kittel TGF, Nemani R, Running SW (1996) Sensitivity of a general circulation model to global changes in leaf area index. J Geophys Let 101: 7393–7408

    Article  Google Scholar 

  • Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. Glob Change Biolog 4: 549–560

    Article  Google Scholar 

  • Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostic Laboratory Global Air Sampling Network. J Geophys Res 99: 22831–22855

    Article  Google Scholar 

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Climate 13: 18–34

    Article  Google Scholar 

  • Cramer W, Blondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin VB, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Moiling C (2000) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biolog, in press

    Google Scholar 

  • Drake BG, Gonzalez-Meier MA, Long SP (1997) More efficient plants: A consequence of rising atmospheric CO2? Annu Rev Plant Physiol Mol Biol 48: 609–639

    Article  Google Scholar 

  • Etheridge DM, Steele LP, Fangenfelds RL, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101: 4115–4128

    Article  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) Atmospheric and oceanic CO2 data and models imply a large terrestrial carbon sink in North America. Science 282: 442–446

    Article  Google Scholar 

  • Field CB, Jackson RB, Mooney HA (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell and Environm 18: 1214–1225

    Article  Google Scholar 

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371: 52–54

    Article  Google Scholar 

  • Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. Glob Change Biolog 4: 561–580

    Article  Google Scholar 

  • Friedlingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D (1995) On the contribution of CO2 fertilization to the missing biospheric sink. Glob Biogeochem Cycles 9: 541–556

    Article  Google Scholar 

  • Friedlingstein P, Joel G, Field CB, Fung IY (1999) Toward an allocation scheme for global terrestrial carbon models. Glob Change Biolog 5: 755–770

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271: 1576–1578

    Article  Google Scholar 

  • Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Glob Biogeochem Cycles 10: 809–837

    Article  Google Scholar 

  • Henderson-Sellers A, McGuffie K, Gross C (1993a) Sensitivity of global model simulations to increased stomatal conductance and CO2 increases. J Climate 8: 1738–1756

    Article  Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Durbridge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993b) Tropical deforestation: Modeling local- and regional-scale climate change. J Geophys Res 98: 7289–7315

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K. (eds) (1996) Climate Change 1995. The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Houghton RA (1995) Land-use change and the carbon cycle. Glob Change Biolog 1: 275–287

    Article  Google Scholar 

  • Joos F, Plattner GK, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284: 464–467

    Article  Google Scholar 

  • Karl TR, Knight RW, Baker B (2000) The record breaking global temperatures of 1997 and 1998: Evidence for an increase in the rate of global warming? Geophys Res Let 27: 719–722

    Article  Google Scholar 

  • Kattenberg A, Giorgi F, Grassl H, Meehl GA, Mitchell JFB, Stouffer RJ, Tokioka T, Weaver AJ, Wigley TML (1996) Climate models - Projections of future climate. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K. (eds) Climate Change 1995. The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 285–357

    Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381: 218–221

    Article  Google Scholar 

  • Kicklighter DW, Bruno M, Donges S, Esser G, Heimann M, Helfrich J, Ift F, Joos F, Kaduk J, Kohlmaier GH, McGuire AD, Melillo JM, Meyer R, Moore B, Nadler A, Prentice IC, Sauf W, Schloss A, Sitch S, Wittenberg U, Wurth G (1999) A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus 51B: 346–366

    Google Scholar 

  • King AW, Post WM, Wullschleger S (1997) The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climatic Change 35: 199–227

    Article  Google Scholar 

  • Kleidon A, Heimann M (1998) Optimised rooting depth and its impacts on the simulated climate of an Atmospheric General Circulation Model. Geophys Res Let 25: 345–348

    Article  Google Scholar 

  • Kleidon A, Fraedrich K, Heimann M (2000) A green planet versus a desert world: estimating the maximum effect of vegetation on the land surface climate. Climate Change 44: 471–493

    Article  Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Winguth A (1996) Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim Dyn 12: 711–721

    Article  Google Scholar 

  • Matear RJ, Hirst AC (1999) Climate change feedback on the future oceanic CO2 uptake. Tellus 51B: 722–733

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363: 234–240

    Article  Google Scholar 

  • Mooney HA, Koch GW (1994) The impact of rising CO2 concentrations on the terrestrial biosphere. Ambio 23: 74–76

    Google Scholar 

  • Orr JC (1999) Ocean Carbon-Cycle Model Intercomparison Project (OCMIP): Phase 1 (1995–1997), IGBP/GAIM Report 7

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436

    Article  Google Scholar 

  • Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning S (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biolog 4: 461–475

    Article  Google Scholar 

  • Polcher J, Laval K (1994) The impact of African and Amazonian deforestation on tropical climate. J Hydrol 155: 389–405

    Article  Google Scholar 

  • Pollard D, Thompson SL (1995) Use of a land surface transfer scheme (LSX) in a global climate model: the response to doubling stomatal conductance. Glob Planetar Change 10: 129–161

    Article  Google Scholar 

  • Raupach MR (1998) Influences of local feedbacks on land-air exchanges of energy and carbon. Glob Change Biolog 4: 477–494

    Article  Google Scholar 

  • Santer BD, Wigley TML, Barnett TP, Anyamba E, and Contributors (1996a) Detection of climate change and attribution of causes. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K. (eds) Climate Change 1995. The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 407–443

    Google Scholar 

  • Santer BD, Taylor KE, Wigley TML, Johns TC, Jones PD, Karoly DJ, Mitchell JFB, Oort AH, Pen-ner JE, Ramaswamy V, Schwarzkopf MD, Stouffer RJ, Tett S (1996b) A search for human influences on the thermal structure of the atmosphere. Nature 382: 39–46

    Article  Google Scholar 

  • Sarmiento JL, Le Quéré C (1996) Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274: 1346–1350

    Article  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393: 245–249

    Article  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1: 77–91

    Article  Google Scholar 

  • Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen TG (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271: 1402–1406

    Article  Google Scholar 

  • Stohlgren TJ, Chase TN, Pielke RA, Kittel TG, Baron JS (1998) Evidence that local land use practices influence regional climate, vegetation and stream flow patterns in adjacent naturel areas. Glob Change Biolog 4: 495–504

    Article  Google Scholar 

  • Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland ST, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proc Natl Acad Sci 94: 8292–8299

    Article  Google Scholar 

  • van Noordwijk M, Martikainen P, Bottner P, Cuevas E, Rouland C, Dhillion SS (1998) Global change and root function. Glob Change Biolog 4: 759–772

    Article  Google Scholar 

  • VEMAP Members (1995) Vegetation/ecosystem modeling and analysis project: Comparing bio-geography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and C02 doubling. Glob Biogeochem Cycles 9: 407–437

    Article  Google Scholar 

  • White A, Cannel MGR, Friend AD (2000) The high-latitude terrestrial carbon sink: a model analysis. Glob Change Biolog 6: 227–245

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

FriedliIngstein, P. (2001). Climate System and Carbon Cycle Feedback. In: Ehlers, E., Krafft, T. (eds) Understanding the Earth System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56843-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56843-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67515-0

  • Online ISBN: 978-3-642-56843-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics