Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 150))

Abstract

Modification of activity at GABAergic synapses powerfully influences epileptic phenomena. These effects show significant differences according to the type of epilepsy involved. The predominant effect for focal motor and tonic-clonic seizures is that impairment or reduction of function at GABAA receptors facilitates epileptic discharges and motor seizure activity and enhancement of function diminishes epileptic activity. This is clearly a consequence of the role of GABAergic synapses in recurrent inhibitory systems in cortical and other structures, and their effect in limiting the excessive discharge of principal neurons in time and space. Compounds blocking the inhibitory action of GABA at GABAA receptors such as bicuculline and picrotoxin are powerful convulsants when given focally in the brain or systemically. Compounds inhibiting glutamic acid decarboxylase activity thereby blocking GABA synthesis, such as pyridoxal phosphate antagonists, are convulsant (for a more extensive list of epilepsy syndromes and seizures caused by GABA-related mechanisms see Table 1). Compounds potentiating the action of GABA at GABAA receptors are anticonvulsant (see below).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Ghani AS, Norris PJ, Smith CCT, Bradford HF (1981) Effects of γ-acetylenic GABA and γ-vinyl GABA on synaptosomal release and uptake of GABA. Biochem Pharmacol 30:1203–1209

    PubMed  CAS  Google Scholar 

  • Amano K, Hamada K, Yagi K, Seino M (1998) Antiepileptic effects of topiramate on amygdaloid kindling in rats. Epilepsy Res 31:123–128

    PubMed  CAS  Google Scholar 

  • Ashton D, Fransen J, Heeres J, Clinke GHC, Janssen PAJ (1992) In-vivo studies on the mechanism of action of the broad spectrum anticonvulsant loreclezole. Epilepsy Res 11:27–36

    PubMed  CAS  Google Scholar 

  • Banerjee PK, Tillakaratne NJ, Brailowsky S, Olsen RW,Tobin AJ, Snead OC III (1998) Alterations in GABAA receptor alpha 1 and alpha 4 subunit mRNA levels in thalamic relay nuclei following absence-like seizures in rats. Exp Neurol 154:213–23

    PubMed  CAS  Google Scholar 

  • Beekman M, Ungard JT, Gasior M, Carter RB, Dijkstra D, Goldberg SR, Witkin JM (1998) Reversal of behavioral effects of pentylenetetrazol by the neuroactive steroid ganaxolone. J Pharmacol Exp Ther Mar 284:868–77

    CAS  Google Scholar 

  • Belelli D, Lambert JJ, Peters JA, Wafford KA, Whiting PJ (1997) The interaction of the general anaesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94:11031–11036

    PubMed  CAS  Google Scholar 

  • Benke D, Honer M, Michel C, Mohler H (1996) GABAA receptor subtypes differentiated by their gamma-subunit variants: prevalence, pharmacology and subunit architecture. Neuropharmacology 35:1413–23

    PubMed  CAS  Google Scholar 

  • Borden LA, Murali Dhar TG, Smith KE, Weinshank RL, Branchek TA, Gluchowski C (1994) Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Europ J Pharmacol 269:219–224

    CAS  Google Scholar 

  • Blümcke I, Beck H, Nitsch R, et al. (1996) Preservation of calretinin-immunoreactive neurons in the hippocampus of epilepsy patients with Ammon’s horn sclerosis. J Neuropathol Exp Neurol 55:329–341

    PubMed  Google Scholar 

  • Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–72

    PubMed  CAS  Google Scholar 

  • Buhl EG, Otis IS, Mody I (1996) Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271:369–373

    PubMed  CAS  Google Scholar 

  • Carter RB, Wood PL, Wieland S, Hawkinson JE, Belelli D, Lambert JJ, White HS, Wolf HH, Mirsadeghi S, Tahir SH, Bolger MB, Lan NC, Gee KW (1997) Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3-alpha-hydroxy-3-beta-methyl-5-alpha-pregnan-20-one), a selective, high-affinity, steroid modulator of the gamma-aminobutyric acid(A) receptor. J Pharmacol Exp Ther 280:1284–95

    PubMed  CAS  Google Scholar 

  • Chadwick D (1999) Safety and efficacy of vigabatrin and carbamazepine in newly diagnosed epilepsy: a multicentre randomised double-blind study. Lancet 354:13–19

    PubMed  CAS  Google Scholar 

  • Coenen AML, Blezer EHM, Van Luijtelaar ELJM (1995) Effects of the GABA-uptake inhibitor tiagabine on electroencephalogram, spike-wave discharges and behaviour of rats. Epilepsy Res 21:89–94

    PubMed  CAS  Google Scholar 

  • Coulter DA (1999) Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia 40 [Suppl 1]:S23–S33

    PubMed  CAS  Google Scholar 

  • Cross AJ, Stirling JM, Robinson TN, Bowen DM, Francis PT, Green AR (1989) The modulation by chlormethiazole of the GABAA-receptor complex in rat brain. Br J Pharmacol 98:284–290

    PubMed  CAS  Google Scholar 

  • Dalby NO,Thomsen C, Fink-Jensen A, Lundbeck J, Sokilde B, Man C-M, Sorensen PO, Meldrum B. (1997) Anticonvulsant properties of two GABA uptake inhibitors NNC 05-2045 and NNC-05-2090, not acting preferentially on GAT1. Epilepsy Res 28:63–72

    PubMed  CAS  Google Scholar 

  • DeBiasi S, Vitellaro-Zuccarello L, Brecha NC (1998) Immunoreactivity for the GABA-transporter-1 and GABA-transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization. Neurosci 83:815–828

    CAS  Google Scholar 

  • DeLorey TM, Handforth A, Anagnostaras S, Homanics GE, Minassian BA, Asatourian A, Fanselow F, Delgado-Escueta A, Ellison G, Olsen RW (1998) Mice lacking the ß3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioural characteristics of Angelman syndrome. J Neurosci 18:8505–8514

    PubMed  CAS  Google Scholar 

  • During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177

    PubMed  CAS  Google Scholar 

  • Eckstein-Ludwig U, Fei J, Schwarz W (1999) Inhibition of uptake, steady state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs. Brit J Pharmacol. 128:92–102

    CAS  Google Scholar 

  • Evans RH (1979) Potentiation of the effects of GABA by pentobarbitone. Brain Res 171:113–120

    PubMed  CAS  Google Scholar 

  • Gingrich KJ, Roberts WA, Kass RS (1995) Dependence of the GABAA receptor gating kinetics on the alpha-subunit isoform: implications for structure-function relations and synaptic transmission. J Physiol (Lond) 489:529–543

    CAS  Google Scholar 

  • Green AR (1998) Clomethiazole (Zendra) in acute ischemic stroke: basic pharmacology and biochemistry and clinical efficacy. Pharmacol Ther 80:123–147

    PubMed  CAS  Google Scholar 

  • Green AR, Misra A, Hewitt KE, Snape MF, Cross AJ (1998). An investigation of the possible interaction of clomethiazole with glutamate and ion channel sites as an explanation of its neuroprotective activity. Pharmacol Toxicol 83:90–94

    PubMed  CAS  Google Scholar 

  • Hadingham KL, Garrett EM, Wafford KA, Bain C, Heavens RP, Sirinathsinghji DJ, Whiting PJ (1996) Cloning of cDNAs encoding the human γ-aminobutyric acid type A receptor α6 subunit and characterisation of the pharmacology of α6 containing receptors. Mol Pharmacol 49:253–259

    PubMed  CAS  Google Scholar 

  • Hales TG, Lambert JJ (1992) Modulation of GABAA and glycine receptors by chlormethiazole. Eur J Pharmacol 210:239–246

    PubMed  CAS  Google Scholar 

  • Halonen T, Miettinen R, Toppinen A, Tuunanen J, Kotti T, Riekkinen PJ (1995) Vigabatrin protects against kainic acid induced neuronal damage in the rat hippocampus. Neurosci Lett 195:13–16

    PubMed  CAS  Google Scholar 

  • Halonen T, Nissinen J, Jansen JA, Pitkanen A. (1996) Tiagabine prevents seizures, neuronal damage and memory impairment in experimental status epilepticus. Eur J Pharmacol 299:69–81

    PubMed  CAS  Google Scholar 

  • Harvey PK, Higenbottam TW, Loh L (1975) Chlormethiazole in treatment of status epilepticus. Br Med J 2:603–605

    PubMed  CAS  Google Scholar 

  • Henry TR, Frey KA, Sackellares JC, Gilman S, Koeppe RA, Brunberg JA, Ross DA, Berent S, Young AB, Kuhl DE (1993) In vivo cerebral metabolism and central benzodiazepine-receptor-binding in temporal lobe epilepsy. Neurology 43:1998–2006

    PubMed  CAS  Google Scholar 

  • Hosford DA, Wang Y (1997) Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin and topiramate against human absence seizures. Epilepsia 38:408–414

    PubMed  CAS  Google Scholar 

  • Houser CR, Esclapez M, Fritschy JM, Möhler H (1995) Decreased expression of the α6 subunit of the GABAA receptor in a model of temporal lobe epilepsy. Soc Neurosci Abstr 21:1475

    Google Scholar 

  • Huguenard JR, Prince DA Kapur J, Lothman EW, DeLorenzo RJ (1994) Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J Neurosci 14:5485–5502

    PubMed  CAS  Google Scholar 

  • Huguenard JR, Prince DA (1994) Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71:2576–2581

    PubMed  CAS  Google Scholar 

  • Huntsman MM, Leggio MG, Jones EG (1996) Nucleus-specific expression of GABA(A) receptor subunit mRNAs in monkey thalamus. J Neurosci 16: 3571–3589

    PubMed  CAS  Google Scholar 

  • Huntsman MM, Porcello DM, Homanics GE, DeLorey TM, Huguenard JR (1999) Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283:541–543

    PubMed  CAS  Google Scholar 

  • Kälviäinen R, Halonen T, Pitkänen A, Riekkinen PJ (1993) Amino acid levels in the cerebrospinal fluid of newly diagnosed epileptic patients: effect of vigabatrin and carbamazepine monotherapies. J Neurochem 60:1244–1250

    PubMed  Google Scholar 

  • Kälviäinen R, Brodie M, Duncan J, Chadwick D, Edwards D, Lyby K (1998) A double blind, placebo-controlled trial of tiagabine given three times daily as add-on therapy for refractory partial seizures. Epilepsy Res 30:31–40

    PubMed  Google Scholar 

  • Kälviäinen R, Nousiäinen I, Mantyjarvi M, Riekkinen PPJ (1999) Initial vigabatrin monotherapy is associated with increased risk of visual field constriction; a comparative follow-up study with patients on initial carbamazepine monotherapy and healthy controls. Epilepsia 39 [Suppl 6]:72

    Google Scholar 

  • Kapur J, Lothman EW, DeLorenzo RJ (1994) Loss of GABAA receptors during partial status epilepticus. Neurology 44:2407–2408

    PubMed  CAS  Google Scholar 

  • Kapur J, Coulter DA (1995) Experimental status epilepticus alters gamma-aminobutyric acid type A receptor function in CA1 pyramidal neurons. Ann Neurol 38:893–900

    PubMed  CAS  Google Scholar 

  • Kapur J, Macdonald RL (1997) Rapid-seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci 17:7532–7540

    PubMed  CAS  Google Scholar 

  • Kash SF, Johnson RS, Tecott LH, Noebels JL, Mayfield RD, Hanahan D, Baekkeskov S (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Nat Acad Sci USA 94:14060–14065

    PubMed  CAS  Google Scholar 

  • Koepp MJ, Richardson MP, Brooks DJ, Cunningham VJ, Duncan JS (1997) Central benzodiazepine/gamma-aminobutyric acid A receptors in idiopathic generalized epilepsy: an [11C]-flumazenil positron emission tomography study. Epilepsia 38:1089–1097

    PubMed  CAS  Google Scholar 

  • Kokaia M, Pratt GD, Elmer E, Bengzon J, Fritschy JM, Kokaia Z, Lindvall O, Möhler H (1994) Biphasic differential changes of GABAA receptor subunit mRNA levels in dentate gyrus granule cells following recurrent kindling-induced seizures. Brain Res Mol Brain Res 23:323–332

    PubMed  CAS  Google Scholar 

  • Kultas-Ilinsky K, Leontiev V, Whiting PJ (1998) Expression of 10 GABA(A) receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca mulatta studied with in situ hybridization histochemistry. Neuroscience 85:179–204

    PubMed  CAS  Google Scholar 

  • Luddens H, Pritchett DB, Kohler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABAA receptor selective for a behavioral alcohol antagonist. Nature 346:648–651

    PubMed  CAS  Google Scholar 

  • Macdonald RL, Meldrum BS (1995) Principles of antiepileptic drug action. In: Levy RH, Mattson RH, Meldrum BS (eds) Antiepileptic drugs, 4th edn. Raven Press, New York, pp61–77

    Google Scholar 

  • Marson, AG, Kadir ZA, Hutton JL, Chadwick DW (1997) The new antiepileptic drugs:a systematic review of their efficacy and tolerability. Epilepsia 38:859–880

    PubMed  CAS  Google Scholar 

  • Martin PJ, Millac PA (1994) Status epilepticus: management and outcome of 107 episodes. Seizure 3:107–113

    PubMed  CAS  Google Scholar 

  • Mathers DA, Barker JL (1980) (-)Pentobarbital opens ion channels of long duration in cultured mouse spinal neurons. Science 209:507–509

    PubMed  CAS  Google Scholar 

  • Mattson RH (1995) General principles: selection of antiepileptic drug therapy. In: Levy RH, Mattson RH, Meldrum BS (eds) Antiepileptic drugs, 4th edn. Raven Press, New York, pp 123–135

    Google Scholar 

  • Meldrum BS, Horton R (1978) Blockade of epileptic responses in the photosensitive baboon, Papio papio, by two irreversible inhibitors of GABA-transaminase, γ-acetylenic GABA (4-amino-hex-5-ynoic acid and γ-vinyl GABA (4-amino-hex-5-enoic acid). Psychopharmacol 69:47–50

    Google Scholar 

  • Metcalf BW (1979) Inhibitors of GABA metabolism. Biochem Pharmacol 28:1712–1715

    Google Scholar 

  • Mienville J-M (1998) Persistent depolarizing action of GABA in rat Cajal-Retzius cells. J Physiol 512:809–817

    PubMed  CAS  Google Scholar 

  • Miller P, Kovar I (1983) Chlormethiazole in the treatment of neonatal status epilepticus. Postgrad Med J 59:801–802

    PubMed  CAS  Google Scholar 

  • Minassian BA, DeLorey TM, Olsen RW, Philippart M, Zhang Q, Bronstein Y, Guerrini R, Van Ness P, Livet MO, Delgado-Escueta AV (1998) Angelman syndrome:correlations between epilepsy phenotypes and genotypes. Ann Neurol 43:485–493

    PubMed  CAS  Google Scholar 

  • Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F (1995) GAT-1, a high affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 15:7734–7746

    PubMed  CAS  Google Scholar 

  • Minelli A, DeBiasi S, Brecha NC, Zucharello LV, Conti F (1996) GAT-3, a highaffinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    PubMed  CAS  Google Scholar 

  • Morimoto K, Sato H, Yamamoto Y, Watanabe T, Suwaki H (1997) Antiepileptic effects of tiagabine, a selective GABA uptake inhibitor, in the rat kindling model of temporal lobe epilepsy. Epilepsia 38:966–974

    PubMed  CAS  Google Scholar 

  • Nakamura J, Tamura S, Kanda T, Ishii A, Ishihara K, Serikawa T, Yamada J, Sasa M (1994) Inhibition by topiramate of seizures in spontaneously epileptic rats and DBA/2 mice. Eur J Pharmacol 254:83–89

    PubMed  CAS  Google Scholar 

  • Nelson N (1998) The family of Na+/Cl− neurotransmitter transporters. J Neurochem 71:1785–1803

    PubMed  CAS  Google Scholar 

  • Novotny EJ, Hyder F, Shevell M, Rothman DL (1999) GABA changes with vigabatrin in the developing human brain. Epilepsia 40:462–466

    PubMed  CAS  Google Scholar 

  • Nusser Z, Hajos N, Somogyi P, Mody I (1998) Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395:172–7

    PubMed  CAS  Google Scholar 

  • Penry JK, So E (1981) Refractoriness of absence seizures and phenobarbital. Neurology 31:158

    Google Scholar 

  • Petroff OAC, Rothman DL, Behar KL, Lamoureux D, Mattson RH (1996c) The effect of gabapentin on brain gamma-aminobutyric acid in patients with epilepsy. Ann Neurol 39:95–99

    PubMed  CAS  Google Scholar 

  • Petroff OAC, Rothman DL, Behar KL, Mattson RH (1996b) Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose. Neurology 46:1459–1463

    PubMed  CAS  Google Scholar 

  • Petroff OAC, Rothman DL, Behar KL, Mattson RH (1996a) Low brain GABA level is associated with poor seizure control. Ann Neurol 40:908–911

    PubMed  CAS  Google Scholar 

  • Poulter MO, Brown LA, Tynan S, Willick G, William R, Mclntyre DC (1999) Differential expression of α1, α2, α3 and α5 GABAA receptor subunits in seizure-prone and seizure-resistant rat models of temporal lobe epilepsy. J Neurosci 19:4654–4661

    PubMed  CAS  Google Scholar 

  • Prevett MC, Lammertsma AA, Brooks DJ, Bartenstein PA, Patsalos PN, Fish DR, Duncan JS (1995) Benzodiazepine-GABAA receptors in idiopathic generalized epilepsy measured with [11C]-flumazenil and positron emission tomography. Epilepsia 36:113–121

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABA A receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    PubMed  CAS  Google Scholar 

  • Quirk K, Gillard NP, Ragan CI, Whiting PJ, McKernan RM (1994) Model of subunit composition of GABA-A receptor subtypes expressed in rat cerebellum with respect to their α and γ/ δ subunits. J Biol Chem 269:16020–16028

    PubMed  CAS  Google Scholar 

  • Qume M, Fowler LJ (1997) Effect of chronic treatment with the GABA transaminase inhibitors gamma-vinyl GABA and ethanolamine-O-sulphate on the in vitro GABA release from rat hippocampus. Br J Pharmacol 122:539–545

    PubMed  CAS  Google Scholar 

  • Rentmeester T, Janssen A, Hulsman J, Scholtes F, van der Kleij B, Overweg J, Meijer J, de Beukelaar F (1991) A double-blind, placebo-controlled evaluation of the efficacy and safety of loreclezole as add-on therapy in patients with uncontrolled partial seizures. Epilepsy Res 9:59–64

    PubMed  CAS  Google Scholar 

  • Rice A, Rafiq A, Shapiro SM, Jakoi ER, Coulter DA, DeLorenzo RJ (1996) Longlasting reduction of inhibitory function and gamma-aminobutyric acid type A receptor subunit mRNA expression in a model of temporal lobe epilepsy. Proc Natl Acad Sci USA 93:9665–9669

    PubMed  CAS  Google Scholar 

  • Richardson MP, Koepp MJ, Brooks DJ, Fish DR, Duncan JS (1996) Benzodiazepine receptors in focal epilepsy with cortical dysgenesis: an 11-C-flumazenil PET study. Ann Neurol 40:188–198

    PubMed  CAS  Google Scholar 

  • Richens A, Chadwick DW, Duncan JS, Dam M, Gram L, Mikkelsen M, Morrow J, Mengel H, Shu V, McKelvy JF, Pierce MW (1995) Adjunctive treatment of partial seizures with tiagabine: a placebo-controlled trial. Epilepsy Res 21:37–42

    PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    PubMed  CAS  Google Scholar 

  • Roepstorff A, Lambert JDC (1992) Comparison of the effect of the GABA uptake blockers, tiagabine and nipecotic acid, on inhibitory synaptic efficacy in hippocampal CA1 neurones. Neurosci Lett 146:131–134

    PubMed  CAS  Google Scholar 

  • Rogers CJ, Twyman RE, Macdonald RL (1994) Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J Physiol (Lond) 475:69–82

    CAS  Google Scholar 

  • Savic I, Roland P, Pearson A, Paulic S, Sedwell G, Widen L (1988) In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 2:864–866

    Google Scholar 

  • Savic I, Widen L,Thorell JO, Blomqvist G, Ericson K, Roland P (1990) Cortical benzodiazepine receptor binding in patients with generalized and partial epilepsy. Epilepsia 31:724–730

    PubMed  CAS  Google Scholar 

  • Savic I, Svanborg E, Thorell JO (1996) Cortical benzodiazepine receptor changes are related to frequency of partial seizures: a positron emission tomography study epilepsia 37:236–244

    CAS  Google Scholar 

  • Saxena NC, Macdonald RL (1996) Properties of putative cerebellar gamma aminobutyric acid A receptor isoforms. Mol Pharmacol 49:567–579

    PubMed  CAS  Google Scholar 

  • Schwarzer C, Tsunashima K, Wanzenbock C, Fuchs K, Sieghart W, Sperk G (1997) GABA(A) receptor subunits in the rat hippocampus. 2. Altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience 80:1001–1017

    PubMed  CAS  Google Scholar 

  • Shank RP, Gardocki JF, Vaught JL, Davis CB, Schupsky JJ, Raffa RB, Dodgson SJ, Nortey SO, Maryanoff BE (1994) Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia 35:450–460

    PubMed  CAS  Google Scholar 

  • Shank RP (1995) Preclinical profile of topiramate, a novel anticonvulsant. Adv AED Therapy 1:6

    Google Scholar 

  • Slany A, Zezula J, Fuchs K, Sieghart W (1995) Allosteric modulation of [3H]flunitrazepam binding to recombinant GABAA receptors. Eur J Pharmacol 291:99–105

    PubMed  CAS  Google Scholar 

  • Smith SE, Parvez NS, Chapman AG, Meldrum BS (1995) The γ-aminobutyric acid uptake inhibitor, tiagabine, is anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 273:259–265

    PubMed  CAS  Google Scholar 

  • Snead OC III (1998) Ganaxolone, a selective, high-affinity steroid modulator of the gamma-aminobutyric acid-A receptor, exacerbates seizures in animal models of absence. Ann Neurol 44:688–91

    PubMed  CAS  Google Scholar 

  • Sperk G, Schwarzer C, Tsunashima K, Fuchs K, Sieghart W (1997) GABAA receptor subunits in the hippocampus. 1. Immunocytochemical distribution of 13 subunits. Neuroscience 80:987–1000

    PubMed  CAS  Google Scholar 

  • Spert G, Scharzer C, Tsunashima K, Kandlhofer S (1998) Expression of GABAA receptor subunits in the hippocampus of the rat after kainic acid-induced lesions. Epilepsy Res 32:129–139

    Google Scholar 

  • Sur C, Farrar S, Kerby J, Whiting PJ, Atack J, McKernan RM (1999) Preferential co-assembly of a4 and δ subunits of the GABA-A receptor in rat thalamus. Mol Pharmacol 56:110–115

    PubMed  CAS  Google Scholar 

  • Taverna S, Sancini G, Mantegazza M, Franceschetti S, Avanzini G (1999) Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther 288:960–968

    PubMed  CAS  Google Scholar 

  • Thompson SA, Whiting PJ, Wafford KA (1996) Alpha subunits influence the action of pentobarbital on recombinant GABA-A receptors. Br J Pharmacol 117:521–527

    PubMed  CAS  Google Scholar 

  • Thompson SM, Gahwiler BH (1992) Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 67:1698–1701

    PubMed  CAS  Google Scholar 

  • Titulaer MNG, Kamphuis W, Pool CW, Heerikhuize JJ van, Lopes da Silva FH (1994) Kindling induces time dependent and regional specific changes in the [3H] muscimol binding in the rat hippocampus: a quantitative autoradiographic study. Neuroscience 59:817–826

    PubMed  CAS  Google Scholar 

  • Titulaer MN, Ghijsen WE, Kamphuis W, De Rijk TC, Lopes da Silva FH (1995) Opposite changes in GABAA receptor function in the CA1-3 area and fascia dentata of kindled rat hippocampus. J Neurochem 64:2615–2621

    PubMed  CAS  Google Scholar 

  • Treiman DM, Meyers PD, Walton NY, Collins JF, Colling C, Rowan J, Handforth A, Faught E, et al (1998) A comparison of four treatments for generalized convulsive status epilepticus. New Engl J Med 339:792–798

    PubMed  CAS  Google Scholar 

  • Tsunashima K, Schwarzer C, Kirchmair E, Sieghart W, Sperk G (1997) GABA(A) receptor subunits in the rat hippocampus. 3. Altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience 80:1019–1032

    PubMed  CAS  Google Scholar 

  • Vigevano F, Cilio MR (1997) Vigabatrin versus ACTH as first-line treatment for infantile spasms: a randomized, prospective study. Epilepsia 38:1270–1274

    PubMed  CAS  Google Scholar 

  • Wafford KA, Bain CJ, Quirk K, McKernan RM, Wingrove PB, Whiting PJ, Kemp J (1994) A novel allosteric site on the GABA-A receptor ß subunit. Neuron 12:775–782

    PubMed  CAS  Google Scholar 

  • Wafford KA, Thompson SA, Sikela J, Wilcox AS, Whiting PJ (1996) Functional characterisation of human GABA-A receptors containing the α4 subunit. Mol Pharmacol 50:670–678

    PubMed  CAS  Google Scholar 

  • Walton NY,Treiman DM (1988) Response of status epilepticus induced by lithium and pilocarpine to treatment with diazepam. Exp Neurol 101:267–75

    PubMed  CAS  Google Scholar 

  • Walker MC, Sander JWAS (1996) Topiramate: a new epileptic drug for refractory epilepsy. Seizure 5:199–203

    PubMed  CAS  Google Scholar 

  • Waymire KG, Mahuren JD, Jaje JM, Guilarte TR, Coburn SP, MacGregor GR (1995) Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nature Genet 11:45–51

    PubMed  CAS  Google Scholar 

  • White HS, Brown SD, Woodhead JH, Skeen GA, Wolf HH (1997) Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res 28:167–179

    PubMed  CAS  Google Scholar 

  • Whiting PJ, McKernan RM, Wafford KA (1995) Structure and function of vertebrate GABAA receptor subtypes. In: Bradley RJ, Harris RA (eds) Intl Rev Neurobiol, 38. Academic Press, pp 95–138

    Google Scholar 

  • Whiting PJ, McAllister G, Vasilatis D, Bonnert T, Heavens RP, Smith DW, Hewson L, O’Donnell R, Rigby M, Sirinathsinghji DJS, Marshall G, Thompson SA, Wafford KA (1997) Neuronal restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J Neurosci 17:5027–5037

    PubMed  CAS  Google Scholar 

  • Wild JM, Martinez C, Reinshagen G, Harding GFA (1999) Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 40:1784–1794

    PubMed  CAS  Google Scholar 

  • Williamson A,Telfeian AE, Spencer DD (1995) Prolonged GABA responses in dentate granule cells in slices isolated from patients with temporal lobe sclerosis. J Neurophysiol 74:378–387

    PubMed  CAS  Google Scholar 

  • Wingrove PB, Wafford KA, Bain C, Whiting PJ (1994) The modulatory action of lore-clezole at the γ-aminobutyric acid type A receptor is determined by a single amino acid in the ß2 and ß3 subunit. Proc Natl Acad Sci USA 91:4569–4573

    PubMed  CAS  Google Scholar 

  • Wingrove PB, Thompson SA, Wafford KA, Whiting PJ (1997) Key amino acids in the gamma subunit of the gamma-aminobutyric acid A receptor that determine ligand binding and modulation at the benzodiazepine site. Molec Pharmacol 52:874–881

    CAS  Google Scholar 

  • Wisden W, Laurie DJ, Monyer HM, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    PubMed  CAS  Google Scholar 

  • Wisden, W, Herb A, Weiland H, Keinanen K, Luddens H, Seeburg PH (1991) Cloning, pharmacological characteristics and expression pattern of rat GABAA receptor α4 subunit. FEBS Lett 289:227–230

    PubMed  CAS  Google Scholar 

  • Zhang SJ, Huguenard JR, Prince DA (1997) GABAA receptor-mediated CI- currents in rat thalamic reticular and relay neurons. J Neurophysiol 78:2280–2286

    PubMed  CAS  Google Scholar 

  • Zezula J, Slany A, Sieghart W (1996) Interaction of allosteric ligands with GABAA receptors containing one, two, or three different subunits. Eur J Pharmacol 301:207–214

    PubMed  CAS  Google Scholar 

  • Zhong Y, Simmonds MA (1997) Interactions between loreclezole, chlormethiazole and pentobarbitone at GABA(A) receptors: functional and binding studies. Br J Pharmacol 121:1392–1396

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meldrum, B.S., Whiting, P. (2001). Anticonvulsants Acting on the GABA System. In: Möhler, H. (eds) Pharmacology of GABA and Glycine Neurotransmission. Handbook of Experimental Pharmacology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56833-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56833-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63191-7

  • Online ISBN: 978-3-642-56833-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics