Skip to main content

The Molecular Architecture of GABAA Receptors

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 150))

Abstract

The structure of the GABAA receptor was unknown until 1987, when its subunits were revealed by cDNA cloning. Much general information on its molecular properties had accrued from biochemical and pharmacological analyses prior to then (reviewed by Stephenson 1988). Starting from purification on a benzodiazepine affinity column of a protein preparation which retained the multiple types of binding site previously identified in the native receptors (Sigel and Barnard 1984), followed by peptide sequencing, cDNA cloning led to the structure of the first 2 subunit types, α1 and β1 (Schofield et al. 1987). The topology of the subunits in the cell membrane (Fig. 1) was thus deduced and a superfamily of transmitter-gated ion channels became apparent (Barnard et al. 1987). This, the “Cys-loop” superfamily (see Fig. 1) (Cockroft et al. 1990; Karlin and Akabas 1995) is now known to contain five related receptor families (Barnard 1996): acetylcholine (nicotinic), 5-hydroxytryptamine3, GABA, glycine and glutamate (anion channel). The latter three, a set of anion channels, are more homologous to each other, sharing up to 27% amino acid sequence identity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelotti TP, Macdonald RL (1993) Assembly of GABAA receptor subunits: α1/ß1 and α 1 ß 1 γ 2s subunits produce unique ion channels with dissimilar single-channel properties. J Neurosci 13:1429–1440

    PubMed  CAS  Google Scholar 

  • Angelotti TP, Uhler MD, Macdonald RL (1993) Assembly of GABAA receptor sub-units: analysis of transient single-cell expression utilizing a fluorescent substrate/marker gene technique. J Neurosci 13:1418–1428

    PubMed  CAS  Google Scholar 

  • Araujo F, Ruano D, Vitorica J (1998) Absence of association between δ and γ2 sub-units in native GABAA receptors from rat brain. Eur J Pharmacol 347:347353

    Article  PubMed  CAS  Google Scholar 

  • Atkinson AE, Bermudez I, Darlison MG, Barnard EA, Earley FGP, Possee RD, Beadle DJ, King LA (1993) Assembly of functional GABAA receptors in insect cells using baculovirus expression vectors. Neuroreport 3:597–600

    Article  Google Scholar 

  • Backus KH, Arigoni M, Drescher U, Scheurer L, Malherbe P, Möhler H, Benson A (1993) Stoichiometry of a recombinant GABAA-receptor deduced from mutation-induced rectification.Neuroreport 5:285–288

    Article  CAS  Google Scholar 

  • Barnard EA (1992) Receptor classes and the transmitter-gated ion channels. Trends Biochem Sci 17:368–374

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA (1996) The transmitter-gated channels: a range of receptor types and structures. Trends Pharmacol Sci 17:305–308

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA (1998) The range of structures of the transmitter-gated channels. In: Endo M (ed) Pharmacology of ionic channel function (Handbook of Experimental Pharmacology). Springer, Berlin Heidelberg New York, pp363–390

    Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology XV. Subtypes of γ-aminobutyric acid-A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–314

    PubMed  CAS  Google Scholar 

  • Baude A, Sequier JM, Mckernan RM, Oliver KR, Somogyi P (1992) Differential subcellular distribution of the α6 subunit versus the α6 and ß2/3 subunits of the GABAA/benzodiazepine receptor complex in granule cells of the cerebellar cortex. Neuroscience 51:739–748

    Article  PubMed  CAS  Google Scholar 

  • Bateson AN, Lasham A, Darlison MG (1991) γ-Aminobutyric acid-A receptor heterogeneity is increased by alternative splicing of a novel ß-subunit gene transcript. J Neurochem 56:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Bencsits E, Ebert V,Tretter V, Sieghart W (1999) A significant part of native γ-aminobutyric acidA receptors containing α4 subunits do not contain γ or δ subunits. J Biol Chem 274:19613–19616

    Article  PubMed  CAS  Google Scholar 

  • Benke D, Fritschy JM,Trzeciak A, Bannwarth W, Mohler H (1994) Distribution, prevalence, and drug binding profile of γ-aminobutyric acid type A receptor subtypes differing in the ß-subunit variant. J Biol Chem 269:27100–27107

    PubMed  CAS  Google Scholar 

  • Benke D, Michel C, Mohler H (1997) GABA(A) receptors containing the α4-subunit: prevalence, distribution, pharmacology, and subunit architecture in situ. J Neurochem 69:806–814

    Article  PubMed  CAS  Google Scholar 

  • Blair LAC, Levitan ES, Dionne VE, Barnard EA (1988) Single subunits of the GABAA receptor form ion channels with properties characteristics of the native receptor. Science 242:577–579

    Article  PubMed  CAS  Google Scholar 

  • Bonnert TP, McKernan RM, Farrar S, le Bourdelles B, Heavens RP, Smith DW, Hewson L, Rigby MR, Sirinathsinghji DJ, Brown N, Wafford KA, Whiting PJ (1999) Theta, a novel γ-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci USA 96:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol (Lond) 497:753–759

    CAS  Google Scholar 

  • Caruncho HJ, Costa E (1994) Double-immunolabeling analysis of GABAA receptor subunits in label-fracture replicas of cultured cerebellar granule cells. Receptors Channels 2:143–153

    PubMed  CAS  Google Scholar 

  • Chang Y, Wang R, Barot S, Weiss DS (1996) Stoichiometry of a recombinant GABAA receptor. J Neurosci, 16:5415–5424

    PubMed  CAS  Google Scholar 

  • Cockroft VB, Ostedgaard DJ, Barnard EA, Lunt GG (1990) Modelling of agonist binding to the ligand-gated ion channel superfamily of receptors. Proteins 8:386–397

    Article  Google Scholar 

  • Craig AM, Banker G, Chang W, McGrath ME, Serpinskaya AS (1996) Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J Neurosci 16:3166–3177

    PubMed  CAS  Google Scholar 

  • Cutting GR, Lu L, O’Hara BF, Kasch LM, Montrose Rafizadeh C, Donovan DM, Shimada S, Antonarakis SE, Guggino WB, Uhl GR, Azazian HH (1991) Cloning of the γ-aminobutyric acid (GABA) ρ1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc Natl Acad Sci 88:2673–2677

    Article  PubMed  CAS  Google Scholar 

  • Cutting GR, Curristin S, Zoghbi H, OHara B, Seldin MF, Uhl GR (1992) Identification of a putative γ-aminobutyric acid (GABA) receptor ρ2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rhol (GABRR1) to human chromosome 6ql4-q21 and mouse chromosome 4. Genomics 12:801–806

    Article  PubMed  CAS  Google Scholar 

  • Davies PA, Hanna MC, Hales TG, Kirkness EF (1997) A novel class of GABA-A receptor subunit confers insensitivity to anaesthetic agents. Nature 385:820–823

    Article  PubMed  CAS  Google Scholar 

  • Devillers-Thiery A, Galzi JL, Eisele JL, Bertrand S, Bertrand D, Changeux JP (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Membr Biol 136:97–112

    Article  PubMed  CAS  Google Scholar 

  • Ducic I, Caruncho HJ, Zhu WJ, Vicini S, Costa E (1995) γ-Aminobutyric acid gating of Cl channels in recombinant GABAA receptors. J Pharmacol Exp Ther 272:438–445

    PubMed  CAS  Google Scholar 

  • Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P, Kemp JA (1994) Molecular pharmacology of γ-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different α, ß, and γ receptor subunit combinations. Mol Pharmacol 46:957–963

    PubMed  CAS  Google Scholar 

  • Endo S, Olsen RW (1993) Antibodies specific for α subunit subtypes of GABAA receptors reveal brain regional heterogeneity. J Neurochem 60:1388–1398

    Article  PubMed  CAS  Google Scholar 

  • Enz R, Brandstatter JH, Hartveit E, Wassle H, Bormann J (1995) Expression of GABA receptor ρ1 and ρ2 subunits in the retina and brain of the rat. Eur J Neurosci 7:1495–1501

    Article  PubMed  CAS  Google Scholar 

  • Enz R, Cutting GR (1999) GABAC receptor ρ subunits are heterogeneously expressed in the human CNS and form homo- and hetero-oligomers with distinct physical properties. Eur J Neurosci 11:41–50

    Article  PubMed  CAS  Google Scholar 

  • Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci 1:563–571

    Article  PubMed  CAS  Google Scholar 

  • Fletcher EL, Koulen P, Wassle H (1998) GABAA and GABAC receptors on mammalian rod bipolar cells. J Comp Neurol 396:351–365

    Article  PubMed  CAS  Google Scholar 

  • Hackam AS, Wang TL, Guggino WB, Cutting GR (1998) Sequences in the amino termini of GABA ρ and GABAA subunits specify their selective interaction in vitro. J Neurochem 70:40–46

    Article  PubMed  CAS  Google Scholar 

  • Hadingham KL, Harkness PC, McKernan RM, Quirk K, Le Bourdelles B, Home AL, Kemp JA, Barnard EA, Ragan CI, Whiting P (1992) Stable expression of mammalian GABAA receptors in mouse cells: demonstration of functional assembly of benzodiazepine-responsive sites. Proc Natl Acad Sci USA 89:6378–6382

    Article  PubMed  CAS  Google Scholar 

  • Hadingham KL, Wafford KA, Thompson SA, Palmer KJ, Whiting PJ (1995) Expression and pharmacology of human GABAA receptors containing γ3 subunits. Eur J Pharmacol 291:301–309

    Article  PubMed  CAS  Google Scholar 

  • Hadingham KL, Wafford KA, Bain C, Garrett EM, Heavens RP, Sirinathsinghji DJS, Whiting PJ (1996) Cloning of cDNA encoding the human γ-aminobutyric acidA receptor α6 subunit and characterization of the pharmacology of α6-containing receptors. Mol Pharmacol 49:253–259

    PubMed  CAS  Google Scholar 

  • Harvey RJ, Chinchetru MA, Darlison MG (1994) Alternative splicing of a 51-nucleotide exon that encodes a putative protein kinase C phosphorylation site generates two forms of the chicken γ-aminobutyric acid-A receptor ß2 subunit. J Neurochem 62:10–16

    Article  PubMed  CAS  Google Scholar 

  • Heblom E, Kirkness EF (1997) A novel class of GABAA receptor subunit in tissues of the reproductive system. J Biol Chem 272:15346–15350

    Article  Google Scholar 

  • Jechlinger M, Pelz R, Tretter V, Klausberger T, Sieghart W (1998) Subunit composition and quantitative importance of hetero-oligomeric receptors: GABAA receptors containing α6 subunits. J Neurosci 18:2449–2457

    PubMed  CAS  Google Scholar 

  • Jones A, Korpi ER, McKernan RM, Pelz R, Nusser Z, Makela R, Mellor JR, Pollard S, Bahn S, Stephenson FA, Randall AD, Sieghart W, Somogyi P, Smith AJ, Wisden W (1997) Ligand-gated ion channel subunit partnerships: GABAA receptor α6 subunit gene inactivation inhibits δ subunit expression. J Neurosci 17:1350–1362

    PubMed  CAS  Google Scholar 

  • Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Khan ZU, Gutierrez A, De Blas A (1994) Short and long forms of γ2 subunits of GABA/benzodiazepine receptor from rat cerebellum. J Neurochem 63:371–374

    Article  PubMed  CAS  Google Scholar 

  • Khan ZU, Gutierrez A, De Blas AL (1996): The α1 and α6 subunits can co-exist in the same cerebellar GABAA receptor maintaining their individual benzodiazepine-binding affinities. J Neurochem 66:685–691

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Kuhse I, Betz H (1995) Targeting of glycine receptor subunits to gephyrinrich domains in transfected human embryonic kidney cells. Mol Cell Neurosci 6: 450–462

    Article  PubMed  CAS  Google Scholar 

  • Kneussel M, Brandstatter JH, Laube B, Stahl S, Muller U, Betz H (1999) Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J Neurosci 19:9289–9297

    PubMed  CAS  Google Scholar 

  • Knight AR, Hartnett C, Marks C, Brown M, Gallager D, Tallman J, Ramabhadran TV (1998) Molecular size of recombinant α1ß1 and α1ß1γ2 GABAA receptors expressed in Sf9 cells. Receptors Channels 6:1–18

    PubMed  CAS  Google Scholar 

  • Kofuji P, Wang JB, Moss SJ, Huganir RL, Burt DR (1991) Generation of two forms of the γ-aminobutyric acid-A receptor γ2-subunit in mice by alternative splicing. J Neurochem 56:713–715

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Kuner T, Kristo P, Kohcer M, Herb A, Luddens H, Seeburg PH (1994) Small N-terminal deletion by splicing in cerebellar α6 subunit abolishes GABAA receptor function. J Neurochem 63:1167–1170

    Article  PubMed  CAS  Google Scholar 

  • Korpi ER, Kuner T, Seeburg PH, Luddens H (1995) Selective antagonist for the cerebellar granule cell-specific γ-aminobutyric acid type A receptor. Mol Pharmacol 47:283–289

    PubMed  CAS  Google Scholar 

  • Koulen P, Brandstatter JH, Enz R, Bormann J, Wassle H (1998) Synaptic clustering of GABAc receptor ρ-subunits in the rat retina. Eur J Neurosci 10:115–127

    Article  PubMed  CAS  Google Scholar 

  • Krishek BJ, Amato A, Connolly CN, Moss SJ, Smart TG (1996) Proton sensitivity of the GABAA receptor is associated with the receptor subunit composition. J Physiol (Lond) 492:431–443

    CAS  Google Scholar 

  • Kusama T, Spivak CE, Whiting P, Dawson VL, Schaeffer JC, Uhl GR (1993) Pharmacology of GABAρl and GABAα/ß receptors expressed in Xenopus oocytes and COS cells. Br J Pharmacol 109:200–206

    Article  PubMed  CAS  Google Scholar 

  • Laurie DJ, Seeburg PH, Wisden W (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. 2. Olfactory bulb and cerebellum. J Neurosci 12:1063–1076

    PubMed  CAS  Google Scholar 

  • Levitan ES, Blair LAC, Dionne VE, Barnard EA (1988a) Biophysical and pharmacological properties of cloned GABAA receptor subunits expressed in Xenopus oocytes. Neuron 1:773–781

    Article  PubMed  CAS  Google Scholar 

  • Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujita N, Rodriguez HF, Stephenson FA, Darlison MG, Barnard EA, Seeburg PH (1988b) Structural and functional basis for GABAA receptor heterogeneity. Nature 336:76–79

    Article  Google Scholar 

  • Li M, De Blas AL (1997) Coexistence of two ß subunit isoforms in the same γ-aminobutyric acid type A receptor. J Biol Chem 272:16564–16569

    Article  PubMed  CAS  Google Scholar 

  • Mamalaki C, Barnard EA, Stephenson FA (1989) Molecular size of the γ-aminobutyric acidA receptor purified from mammalian cerebral cortex. J Neurochem 52:125–134

    Article  Google Scholar 

  • Mckernan RM, Whiting PJ (1996) Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N (1999) Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J Mol Biol 288:765–786

    Article  PubMed  CAS  Google Scholar 

  • Moss S, Smart TG, Porter N, Nayeem N, Devine J, Stephenson FA, Macdonald RL, Barnard EA (1990) Cloned GABA receptors are maintained in a stable cell line: allosteric and channel properties. Mol Brain Research 189:77–88

    CAS  Google Scholar 

  • Nayeem N, Green TP, Martin IL, Barnard EA (1994) Quaternary structure of the native GABAA receptor determined by electron microscope image analysis. J Neurochem 62:815–818

    Article  PubMed  CAS  Google Scholar 

  • Neelands TR, Fisher JL, Bianchi M, Macdonald RL (1999) Spontaneous and γ-aminobutyric acid activated GABAA receptor channels formed by epsilon subunit-containing isoforms. Mol Pharmacol 55:168–178

    PubMed  CAS  Google Scholar 

  • Neelands TR, Macdonald RL (1999) Incorporation of the π subunit into functional γ-aminobutyric acid-A receptors. Mol Pharmacol 56:598–610

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

    PubMed  CAS  Google Scholar 

  • Ogurusu T, Eguchi G, Shingai R (1997) Localisation of GABA receptor ρ3 subunit in rat retina. Neuroreport 8:925–927

    Article  PubMed  CAS  Google Scholar 

  • Ogurusu T, Yanagi K, Watanabe M, Fukaya M, Shingai R (1999) Localisation of GABA receptor ρ2 and ρ3 subunits in rat brain and functional expression of homooligomeric ρ3 receptors and hetero-oligomeric ρ2ρ3 receptors. Receptors Channels 6:463–476

    PubMed  CAS  Google Scholar 

  • Pollard S, Duggan MJ, Stephenson FA (1993) Further evidence for the existence of alpha subunit heterogeneity within discrete γ-aminobutyric acidA receptor subpopulations. J Biol Chem 268:3753–3757

    PubMed  CAS  Google Scholar 

  • Pollard S, Thompson CL, Stephenson FA (1995) Quantitative characterization of α6 and α1α6 subunit-containing native γ-aminobutyric acid-A receptors of adult rat cerebellum demonstrates two α subunits per receptor oligomer. J Biol Chem 270:3753–3757

    Google Scholar 

  • Pritchett DB, Sontheimer H, Gorman CM, Kettenmann H, Seeburg PH, Schofield PR (1988) Transient expression shows ligand gating and allosteric potentiation of GABAA receptor subunits. Science 242:1306–1308

    Article  PubMed  CAS  Google Scholar 

  • Puia G, Vicini S, Seeburg PH, Costa E (1991) Influence of recombinant γ-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of γ-aminobutyric acid-gated Cl currents. Mol Pharmacol 39:691–696

    PubMed  CAS  Google Scholar 

  • Quirk K, Gillard NP, Ragan CI, Whiting PJ, Mckernan RM (1994a) γ-Aminobutyric acid type A receptors in the rat brain can contain both γ2 and γ3 subunits, but γ1 does not exist in combination with another γsubunit. Mol Pharmacol 45:1061–1070

    PubMed  CAS  Google Scholar 

  • Quirk K, Gillard NP, Ragan CI, Whiting PJ, Mckernan RM (1994b) Model of subunit composition of γ-aminobutyric acid A receptor subtypes expressed in rat cerebellum with respect to their α and γ/δ subunits. J Biol Chem 269:16020–16028

    PubMed  CAS  Google Scholar 

  • Quirk K, Whiting PJ, Ragan CI, Mckernan RM (1995) Characterisation of δ-subunit containing GABAA receptors from rat brain. Eur J Pharmacol 290:175–181

    Article  PubMed  CAS  Google Scholar 

  • Sanna E, Garau F, Harris RA (1995) Novel properties of homomeric beta 1 γ-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital. Mol Pharmacol 46:213–217

    Google Scholar 

  • Saxena NC, Macdonald RL (1994) Assembly of GABAA receptor subunits: role of the δ-subunit. J Neurosci 14:7077–7086

    PubMed  CAS  Google Scholar 

  • Saxena NC, Macdonald RL (1996) Properties of putative cerebellar γ-aminobutyric acid A receptor isoforms. Mol Pharmacol 49:567–579

    PubMed  CAS  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily. Nature 328:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Cutting GR, Uhl GR (1992) γ-Aminobutyric acid A or C receptor? γ-Aminobutyric acid ρ1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive γ-aminobutyric acid responses in Xenopus oocytes. Mol Pharmacol 41:683–687

    PubMed  CAS  Google Scholar 

  • Shingai R, Sutherland ML, Barnard EA (1991) Effects of subunit types of the cloned GABAA receptor on the response to a neurosteroid. Eur J Pharmacol 206:77–80

    Article  PubMed  CAS  Google Scholar 

  • Shingai R, Yanagi K, Fukushima T, Sakata K, Ogurusu T (1996) Functional expression of rat GABA receptor ρ3 subunit. Neurosci Res 26:387–390

    Article  PubMed  CAS  Google Scholar 

  • Shivers BD, Killisch I, Sprengel R, Sontheimer H, Kohler M, Schofield PR, Seeburg PH (1989) Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337

    Article  PubMed  CAS  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181–234

    PubMed  CAS  Google Scholar 

  • Sigel E, Barnard EA (1984) A γ-aminobutyric acid/benzodiapzepine receptor complex rom bovine cerebral cortex. Improved purification with preservation of regulatory sites and their regulations. J Biol Chem 259:7129–7223

    Google Scholar 

  • Sigel E, Baur R,Trube G, Mohler H, Malherbe P (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5:703–711

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Fritschy JM, Benke D, Roberts JD, Sieghart W (1996) The γ2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the α1and ß2/3 subunits in hippocampus, cerebellum and globus pallidus. Neuropharmacology 35:1425–1444

    Article  PubMed  CAS  Google Scholar 

  • Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM (1999) Preferential coassembly of α4 and δ subunits of the γ-aminobutyric acid-A receptor in rat thalamus. Mol Pharmacol 56:110–1155

    PubMed  CAS  Google Scholar 

  • Toyoshima C, Unwin N (1990) Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J Cell Biol 111:2623–2635

    Article  PubMed  CAS  Google Scholar 

  • Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17:2728–2737

    PubMed  CAS  Google Scholar 

  • Varecka L, Wu CH, Rotter A, Frostholm A (1994) GABAA benzodiazepine receptor α6 subunit mRNA in granule cells of the cerebellar cortex and cochlear nuclei: expression in developing and mutant mice. J Comp Neurol 339:341–352

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn TA (1994) Formation of heteromeric γ-aminobutyric acid type A receptors containing two different α subunits. Mol Pharmacol 45:475–480

    PubMed  CAS  Google Scholar 

  • Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4:919–928

    Article  PubMed  CAS  Google Scholar 

  • Wafford KA, Thompson SA, Thomas D, Sikela J, Wilcox AS, Whiting PJ (1996) Functional characterization of human γ-aminobutyric acidA receptors containing the α4 subunit. Mol Pharmacol 50:670–678

    PubMed  CAS  Google Scholar 

  • Wang TL, Guggino WB, Cutting GR (1994) A novel γ-aminobutyric acid receptor subunit (ρ2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. J Neurosci 14:6524–6531

    PubMed  CAS  Google Scholar 

  • Wegelius K, Pasternack M, Hiltunen JO, Rivera C, Kaila K, Saarma M, Reeben M (1998) Distribution of GABA receptor ρ-subunit transcripts in the rat brain. Eur J Neurosci 10:350–357

    Article  PubMed  CAS  Google Scholar 

  • Whiting P, Mckernan RM, Iversen LL (1990) Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 subunit, one of which contains a protein kinase C phosphorylation site. Proc Natl Acad Sci USA 87:9966–9970

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, McAllister G, Vassilatis D, Bonnert TP, Heavens RP, Smith DW, Hewson L, O’Donnell R, Rigby MR, Sirinathsinghji DJS, Marshall G, Thompson SA, Wafford KA (1997) Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J Neurosci 17:5027–5037

    PubMed  CAS  Google Scholar 

  • Zhang D, Pan ZH, Zhang X, Brideau AD, Lipton SA (1995) Cloning of a γ-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proc Natl Acad Sci 92:11756–11760

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnard, E.A. (2001). The Molecular Architecture of GABAA Receptors. In: Möhler, H. (eds) Pharmacology of GABA and Glycine Neurotransmission. Handbook of Experimental Pharmacology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56833-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56833-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63191-7

  • Online ISBN: 978-3-642-56833-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics