Skip to main content

High Resolution Translational Spectroscopic Studies of Elementary Chemical Processes

  • Chapter
  • 924 Accesses

Abstract

Nascent product quantum state distribution in chemical reactions can now be measured routinely using many laser-based techniques such as laser-induced fluorescence (LIF), resonance-enhanced multiphoton ionization (REMPI) etc. For example, in the O(1D) + H2 → OH(2II) + H reaction, the OH radical products are frequently detected using LIF through the A←X transition. Quantum state distribution of nascent chemical products, however, only carries part of the product information in a molecular beam experiment. Information on the angular distributions of reaction products is at least as important to the understanding of the whole picture of reactions. In reality, quantum state resolved differential cross section measurements could provide the most detailed mechanistic information on a chemical reaction, and also the most stringent test for a quantitatively accurate theoretical picture for this process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Schnieder et al.: J. Chem. Phys. 92, 7027 (1990)

    Article  ADS  Google Scholar 

  2. L. Schnieder et ah: Science 269, 207 (1995)

    Article  ADS  Google Scholar 

  3. L. Schnieder et ah: J. Chem. Phys. 107, 6175 (1997)

    Article  ADS  Google Scholar 

  4. M.N.R. Ashfold, D.H. Mordaunt, S.H.S. Wilson, Advances in Photochemistry, Volume 21, edited by D.C. Neckers, D.H. Volman and G. v. Bunau, John Wiley & Sons, Inc, 217 (1996)

    Chapter  Google Scholar 

  5. W.A. Chupka: J. Chem. Phys. 98, 4520 (1993)

    Article  ADS  Google Scholar 

  6. A. ten Wolde et ah: Phys. Rev. A 40, 485 (1989)

    Article  ADS  Google Scholar 

  7. J.P. Marangos et ah: J. Opt. Soc. Am. B 7, 1254 (1990)

    Article  ADS  Google Scholar 

  8. R.P. Wayne: Chemistry of Atmospheres, 2nd ed., Oxford Science, Oxford, 1991.

    Google Scholar 

  9. P. Andresen, G.S. Ondrey, B. Titze: Phys. Rev. Lett. 50, 486 (1983)

    Article  ADS  Google Scholar 

  10. H. Guo, J.N. Murrel: Mol. Phys. 65, 821 (1998)

    Article  ADS  Google Scholar 

  11. S. Hennig, V. Engel, R. Schinke: Chem. Phys. Lett. 149, 455 (1988)

    Article  ADS  Google Scholar 

  12. K. Kuhl, R. Schinke: Chem. Phys. Lett. 158, 81 (1989)

    Article  ADS  Google Scholar 

  13. R. Schinke, V. Engel, V. Staemmler: J. Chem. Phys. 83, 4522 (1985)

    Article  ADS  Google Scholar 

  14. P. Andresen, R. Schinke: In: Molecular Photodissociation Dynamics, edited by M.N.R. Ashfold, J. Baggot, Royal Society of Chemistry, London (1987)

    Google Scholar 

  15. D. Imre, J. Zhang: Chem. Phys. 139, 89 (1989)

    Article  ADS  Google Scholar 

  16. V. Engel, R. Schinke, V. Staemmler: Chem. Phys. Lett. 130, 413 (1986)

    Article  ADS  Google Scholar 

  17. V. Engel, R. Schinke, V. Staemmler J. Chem. Phys. 88, 129 (1988)

    Article  ADS  Google Scholar 

  18. P. Andresen, G.S. Ondrey, B. Titze, E.W. Rothe: J. Chem. Phys. 80, 2548 (1984)

    Article  ADS  Google Scholar 

  19. P. Andresen et al.: J. Chem. Phys. 83, 1429 (1985)

    Article  ADS  Google Scholar 

  20. D. Hausler, P. Andresen, R. Schinke: J. Chem. Phys. 87, 3949 (1987)

    Article  ADS  Google Scholar 

  21. R.L. Vander Wal, F.F. Crim: J. Chem. Phys. 93, 5331 (1989)

    Article  Google Scholar 

  22. R.L. Vander Wal, R.J. Scott, F.F. Crim: J. Chem. Phys. 92, 803 (1990)

    Article  ADS  Google Scholar 

  23. R.L. Vander Wal et al.: J. Chem. Phys. 94, 3548 (1991)

    Article  ADS  Google Scholar 

  24. R. Schinke et al.: J. Chem. Phys. 94, 283 (1991)

    Article  ADS  Google Scholar 

  25. R.L. Vander Wal, J.L. Scott, F.F. Crim: J. Chem. Phys. 94, 1859 (1991)

    Article  ADS  Google Scholar 

  26. M. Brouard, S.R. Langford, D.E. Manolopoulos: J. Chem. Phys. 101, 7458 (1994)

    Article  ADS  Google Scholar 

  27. A.U. Grunewald, K.-H. Gericke, F.J. Comes: Chem. Phys. Lett. 133, 501 (1987)

    Article  ADS  Google Scholar 

  28. K. Mikulecky, K.-H. Gericke, F.J. Comes: Chem. Phys. Lett. 182, 290 (1991)

    Article  ADS  Google Scholar 

  29. D.F. Plusquellic, O. Votava, D.J. Nesbitt: J. Chem. Phys. 101, 6365 (1994)

    Article  ADS  Google Scholar 

  30. D.F. Plusquellic, O. Votava, D.J. Nesbitt: J. Chem. Phys. 107, 6123 (1997)

    Article  ADS  Google Scholar 

  31. H.J. Krautwald et al.: Faraday Discuss. Chem. Soc. 82, 99 (1986)

    Article  Google Scholar 

  32. D.H. Mordaunt, M.N.R. Ashfold, R. Dixon: J. Chem. Phys. 100, 7360 (1994)

    Article  ADS  Google Scholar 

  33. K. Weide, R. Schinke: J. Chem. Phys. 87, 4627 (1987)

    Article  ADS  Google Scholar 

  34. R. Dixon: Mol. Phys. 85, 333 (1985)

    Article  ADS  Google Scholar 

  35. A. Hodgson et al.: Mol. Phys. 54, 551 (1985)

    Article  Google Scholar 

  36. M.P. Docker, A. Hodgson, J.P. Simons: Mol. Phys. 57, 129 (1986)

    Article  ADS  Google Scholar 

  37. A. Hodgson: Faraday Discuss. Chem. Soc. 82, 190 (1986)

    Google Scholar 

  38. L.J. Dunne: ibid. 82, 190 (1986)

    Google Scholar 

  39. J.N. Murrel, ibid. 82, 191 (1986)

    Google Scholar 

  40. M.N.R. Ashfold, R.N. Dixon, ibid. 82, 193 (1986)

    Google Scholar 

  41. E. Segev, M. Shapiro: J. Chem. Phys. 77, 5604 (1982)

    Article  ADS  Google Scholar 

  42. L.J. Dunne, J, Guo, J.N. Murrel: Mol. Phys. 62, 283 (1987)

    Article  ADS  Google Scholar 

  43. M. Brouard, M.P. Docker, J.P. Simons: Faraday Discuss. Chem. Soc. 82, 188 (1986)

    Google Scholar 

  44. N. Shafizadeh et al.: Chem. Phys. Lett. 152, 78 (1988)

    Article  ADS  Google Scholar 

  45. L.J. Dunne, J.N. Murrel, J.G. Stamper: Chem. Phys. Lett. 112, 497

    Article  ADS  Google Scholar 

  46. B. Heumann et al.: Chem. Phys. Lett. 166, 385 (1990)

    Article  ADS  Google Scholar 

  47. D.H. Mordaunt, M.N.R. Ashfold, R.N. Dixon: J. Chem. Phys. 100, 7360 (1994)

    Article  ADS  Google Scholar 

  48. R.N. Dixon: J. Chem. Phys. 102, 301 (1995)

    Article  ADS  Google Scholar 

  49. R. Schinke, V. Engel, V. Staemmler: J. Chem. Phys. 83, 4522 (1985)

    Article  ADS  Google Scholar 

  50. R. N Dixon et al.: Science 285, 1249 (1999)

    Article  Google Scholar 

  51. D.H. Mordaunt, M.N.R. Ashfold, R.N. Dixon: J. Chem. Phys. 104, 6460 (1996)

    Article  ADS  Google Scholar 

  52. J.G. Anderson: Ann. Rev. Phys. Chem. 38, 489 (1987), and references therein

    Article  ADS  Google Scholar 

  53. G. Dixon-Lewis, D.J. Williams: Comprehensive Chem. Kinet. 17, 1 1977

    Article  Google Scholar 

  54. G. Paraskevopoulos, R.J. Cvetanovic: J. Am. Chem. Soc. 91, 7572 (1969)

    Article  Google Scholar 

  55. R.J. Donovan, D. Husain, L.J. Kirsch: Chem. Phys. Lett. 6, 488 (1970)

    Article  ADS  Google Scholar 

  56. R.F. Heidner III, D. Husain: Int. J. Chem. Kinet. 5, 819 (1973)

    Article  Google Scholar 

  57. M.J.E. Gauthier, D.R. Snelling: J. Photochem. 4, 27 (1975)

    Article  Google Scholar 

  58. L.J. Stief, W.A. Payne, R.B. Klemm: J. Chem. Phys. 62, 4000 (1975)

    Article  ADS  Google Scholar 

  59. J.C. Tully: J. Chem. Phys. 62, 1893 (1975)

    Article  ADS  Google Scholar 

  60. J.A. Davidson et al.: J. Chem. Phys. 64, 57 (1976)

    Article  ADS  Google Scholar 

  61. J.A. Davidson et al.: J. Chem. Phys. 67, 5021 (1977)

    Article  ADS  Google Scholar 

  62. P.H. Wine, A.R. Ravishankara: Chem. Phys. Lett. 77, 103 (1981)

    Article  ADS  Google Scholar 

  63. A.M. Pravilov, V.N. Pauk, S.E. Ryabov: Kinet. Catal. 22, 1109 (1981)

    Google Scholar 

  64. P.J. Ogren et al.: J. Phys. Chem. 86, 238 (1982)

    Article  Google Scholar 

  65. W.B. DeMore et al.: Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 9, JPL Publication 90-1, Pasadena, CA., 1990, pp1

    Google Scholar 

  66. R. Atkinson et al.: Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data 21, 1125 (1992)

    Article  ADS  Google Scholar 

  67. Y. Matsumi et al.: J. Phys. Chem. 97, 6816 (1993)

    Article  Google Scholar 

  68. S. Koppe et al.: Chem. Phys. Lett. 214, 546 (1993)

    Article  ADS  Google Scholar 

  69. T. Laurent et al.: Chem. Phys. Lett. 236, 343 (1995)

    Article  ADS  Google Scholar 

  70. P.A. Whitlock, J.T. Muckerman, E.R. Fisher: J. Chem. Phys. 76, 4468

    Article  ADS  Google Scholar 

  71. R. Schinke, W.A. Lester, Jr.: J. Chem. Phys. 72, 3754 (1980)

    Article  ADS  Google Scholar 

  72. S.W. Ransome, J.S. Wright: J. Chem. Phys. 77, 6346 (1982)

    Article  ADS  Google Scholar 

  73. P.J. Kuntz, B.I. Niefer, J.J. Sloan: J. Chem. Phys. 88, 3629 (1988)

    Article  ADS  Google Scholar 

  74. G.C. Schatz et al.: J. Chem. Phys. 107, 2340 (1997)

    Article  ADS  Google Scholar 

  75. J.E. Butler et al.: Chem. Phys. Lett. 95, 183 (1983)

    Article  Google Scholar 

  76. J.E. Butler et al.: J. Chem. Phys. 84, 5365 (1986)

    Article  ADS  Google Scholar 

  77. R.J. Buss et al.: Chem. Phys. Lett. 82, 386 (1981)

    Article  ADS  Google Scholar 

  78. K. Tsukiyama, Katz, R. Bersohn: J. Chem. Phys. 83, 2889 (1985)

    Article  ADS  Google Scholar 

  79. Y. Matsumi et al.: J. Phys. Chem. 96, 10622 (1992)

    Article  Google Scholar 

  80. M.S. Fritzcharles, G.C. Schatz: J. Phys. Chem. 90, 3634 (1986)

    Article  Google Scholar 

  81. L.J. Dunne: Chem. Phys. Lett. 158, 535 (1989)

    Article  ADS  Google Scholar 

  82. A.J. Alexander, F.J. Aoiz, M. Brouard, J.P. Simons, ibid. 256, 561 (1996)

    ADS  Google Scholar 

  83. J.K. Badenhoop, H. Koizumi, G.C. Schatz: J. Chem. Phys. 91, 142 (1989)

    Article  ADS  Google Scholar 

  84. T. Peng et al.: Chem. Phys. Lett. 248, 37 (1996)

    Article  ADS  Google Scholar 

  85. D.-C. Che, K. Liu: J. Chem. Phys. 103, 5164 (1995)

    Article  ADS  Google Scholar 

  86. Y.T. Hsu, K. Liu: J. Chem. Phys. 107, 1664 (1997)

    Article  ADS  Google Scholar 

  87. Y.-T. Hsu, J. -H. Wang, K. Liu: J. Chem. Phys. 107, 2351 (1997)

    Article  ADS  Google Scholar 

  88. D.M. Neumark et al.: J. Chem. Phys. 82, 3045 (1985)

    Article  ADS  Google Scholar 

  89. D.M. Neumark et al.: J. Chem. Phys. 82, 3067 (1985)

    Article  ADS  Google Scholar 

  90. M. Faubel et al.: Chem. Phys. 207, 227 (1996)

    Article  ADS  Google Scholar 

  91. M. Baer et al.: J. Chem. Phys. 110, 10231 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, X., Lin, J.J., Hwang, D.W., Yang, X.F., Harich, S., Yang, X. (2001). High Resolution Translational Spectroscopic Studies of Elementary Chemical Processes. In: Campargue, R. (eds) Atomic and Molecular Beams. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56800-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56800-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63150-4

  • Online ISBN: 978-3-642-56800-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics