Skip to main content

Zellbiologie

  • Chapter
Cystische Fibrose

Zusammenfassung

Dem Krankheitsbild der cystischen Fibrose liegt auf zellulärer Ebene eine schwere Störung des Elektrolyttransports des Epithelgewebes des Epithelgewebes zugrunde. Bereits 1953 beschrieben diSant’Agnese und Mitarbeiter einen exzessiven Salzverlust bei Kindern mit Mukoviszidose während sommerlicher Hitzeperioden über den Schweiß [58], eine Beobachtung, diezur Bestimmung der Natrium- und Chloridionen-konzentrationen im Schweiß als diagnostischer Standard bis heute führte [71]. Da die bei der CF betroffenen Organe, wie Schweißdrüsen, Tracheobron-chialsystem, Pankreas, Speicheldrüsen, Nebenhoden und Darm, epitheliale Organe darstellen und die Sekrete dieser Organe abnorm eingedickt bzw. dehydriert sind, wurde die Forschung auf den Elektrolyt- und Wassertransport von CF-Epithelgewebe fokussiert

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Liteatur zu 2.1 – 2.3

  1. Akabas MH (1998) Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Biochemistry 37: 12233–12240

    PubMed  CAS  Google Scholar 

  2. Akabas MH, Kaufmann C, Cook TA, Archdeacon P (1994) Amino acid residues lining the chloride Channel of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:14865–14868

    PubMed  CAS  Google Scholar 

  3. Akabas MH, Cheung M, Guinamard R (1997) Probing the structural and functional domains of the CFTR chloride Channel. J Bioenerg Biomembr 29:453–463

    PubMed  CAS  Google Scholar 

  4. Alvaro D, Gigliozzi A, Fraioli F, Romeo R, Papa E, Delle Monache M, Capocaccia L (1997) Hormonal regulation of bicarbonate secretion in the biliary epithelium. Yale J Biol Med 70:417–426

    PubMed  CAS  Google Scholar 

  5. Ameen NA, Ardito T, Kashgarian M, Marino CR (1995) A unique subset of rat and human intestinal villus cells express the cystic fibrosis transmembrane conductance regulator. Gastroenterology 108:1016–1023

    PubMed  CAS  Google Scholar 

  6. Ameen NA, Martensson B, Bourguinon L, Marino C, Isenberg J, McLaughlin GE (1999) CFTR Channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo. J Cell Sei 112:887 – 894

    CAS  Google Scholar 

  7. Arnes GF, Lecar H (1992) ATP-dependent bacterial transporters and cystic fibrosis: analogy between Channels and transporters. FASEB J 6:2660–2666

    Google Scholar 

  8. Arnes GF, Mimura CS, Shyamala V (1990) Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. FEMS Microbiol Rev 6:429–446

    Google Scholar 

  9. Arnes GF, Mimura CS, Holbrook SR, Shyamala V (1992) Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. Adv Enzymol Relat Areas Mol Biol 65:1 – 47

    Google Scholar 

  10. Anderson MP, Welsh MJ (1992) Regulation by ATP and ADP of CFTR chloride Channels that contain mutant nucleotide-binding domains. Science 257:1701 –1704

    PubMed  CAS  Google Scholar 

  11. Anderson MP, Berger HA, Rieh DP, Gregory RJ, Smith AE, Welsh MJ (1991) Nucleoside triphosphates are required to open the CFTR chloride Channel. Cell 67:775–784

    PubMed  CAS  Google Scholar 

  12. Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, Smith AE, Welsh MJ (1991) Demonstration that CFTR is a chloride Channel by alteration of its anion selectivity. Science 253:202–205

    PubMed  CAS  Google Scholar 

  13. Anderson MP, Rieh DP, Gregory RJ, Smith AE, Welsh MJ (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679 – 682

    PubMed  CAS  Google Scholar 

  14. Audrezet MP, Mercier B, Guillermit H, Quere I, Verlingue C, Rault G, Ferec C (1993) Identification of 12 novel mutations in the CFTR gene. Hum Mol Genet 2:51 – 54

    PubMed  CAS  Google Scholar 

  15. Barasch J, al-Awqati Q (1993) Defective aeidification of the biosynthetic pathway in cystic fibrosis. J Cell Sei Suppl 17:229–233

    CAS  Google Scholar 

  16. Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q (1991) Defective aeidification of intracellular organelles in cystic fibrosis. Nature 352:70–73

    PubMed  CAS  Google Scholar 

  17. Bargon J, Trapnell BC, Chu CS, Rosenthal ER, Yoshimura K, Guggino WB, Dalemans W, Pavirani A, Lecocq JP, Crystal RG (1992) Down-regulation of cystic fibrosis transmembrane conduetance regulator gene expression by agents that modulate intracellular divalent cations. Mol Cell Biol 12:1872–1878

    PubMed  CAS  Google Scholar 

  18. Bargon J, Trapnell BC, Yoshimura K, Dalemans W, Pavirani A, Lecocq JP, Crystal RG (1992) Expression of the cystic fibrosis transmembrane conduetance regulator gene can be regulated by protein kinase C. J Biol Chem 267:16056–16060

    PubMed  CAS  Google Scholar 

  19. Barnard EA, Burnstock G, Webb TE (1994) G protein-cou-pled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci 15:67–70

    PubMed  CAS  Google Scholar 

  20. Baukrowitz T, Hwang TC, Nairn AC, Gadsby DC (1994) Coupling of CFTR Cl¯ Channel gating to an ATP hydrolysis cycle. Neuron 12:473–482

    PubMed  CAS  Google Scholar 

  21. Bear CE, Li CH, Kartner N, Bridges RJ, Jensen TJ, Ramjee-singh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conduetance regulator (CFTR). Cell 68:809–818

    PubMed  CAS  Google Scholar 

  22. Bebok Z, Mazzochi C, King SA, Hong JS, Sorscher EJ (1998) The mechanism underlying cystic fibrosis transmembrane conduetance regulator transport from the endoplasmic reticulum to the proteasome includes Secölbeta and a cytosolic, deglycosylated intermediary. J Biol Chem 273:29873 – 29878

    PubMed  CAS  Google Scholar 

  23. Becq F, Fanjul M, Merten M, Figarella C, Hollande E, Gola M (1993) Possible regulation of CFTR-chloride Channels by membrane-bound phosphatases in pancreatic duet cells. FEBS Lett 327:337–342

    PubMed  CAS  Google Scholar 

  24. Becq F, Mettey Y, Gray MA, Galietta LJ, Dormer RL, Merten M, T Mt, Chappe V, Marvingt-Mounir C, Zegarra-Moran O, Tarran R, Bulteau L, R Dr, Pereira MM, McPherson MA, Rogier C, Joffre M, Argent BE, Sarrouilhe D, Kammouni W, Figarella C, Verrier B, Gola M, Vierfond JM (1999) Development of substituted benzo[c]quinolizinium Compounds as novel activators of the cystic fibrosis chloride Channel. J Biol Chem 274:27415–27425

    PubMed  CAS  Google Scholar 

  25. Berger HA, Travis SM, Welsh MJ (1993) Regulation of the cystic fibrosis transmembrane conduetance regulator Cl¯ Channel by specific protein kinases and protein phosphatases. J Biol Chem 268:2037–2047

    PubMed  CAS  Google Scholar 

  26. Bianchet MA, Ko YH, Amzel LM, Pedersen PL (1997) Modeling of nucleotide binding domains of ABC transporter proteins based on a Fl-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conduetance regulator (CFTR). J Bioenerg Biomembr 29:503 – 524

    PubMed  CAS  Google Scholar 

  27. Boat TF, Cheng PW (1989) Epithelial cell dysfunetion in cystic fibrosis: implications for airways disease. Acta Paediatr Scand Suppl 363:25 – 29

    PubMed  CAS  Google Scholar 

  28. Boucher RC, Cotton CU, Gatzy JT, Knowles MR, Yankaskas JR (1988) Evidence for reduced Cl¯ and increased Na+ permeability in cystic fibrosis human primary cell cultures. J Physiol (Lond) 405:77–103

    CAS  Google Scholar 

  29. Bradbury NA, Jilling T, Berta G, Sorscher EJ, Bridges RJ, Kirk KL (1992) Regulation of plasma membrane recycling by CFTR. Science 256:530 – 532

    PubMed  CAS  Google Scholar 

  30. Bradbury NA, Cohn JA, Venglarik CJ, Bridges RJ (1994) Biochemical and biophysical identification of cystic fibrosis transmembrane conduetance regulator chloride Channels as components of endocytic clathrin-coated vesicles. J Biol Chem 269:8296–8302

    PubMed  CAS  Google Scholar 

  31. Bremer S, Hoof T, Wilke M, Busche R, Schölte B, Riordan JR, Maass G, Tümmler B (1992) Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosis transmembrane-conduetance regulator mRNA transcripts in human epithelia. Eur J Biochem 206:137–149

    PubMed  CAS  Google Scholar 

  32. Breuer W, Kartner N, Riordan JR, Cabantchik ZI (1992) Induetion of expression of the cystic fibrosis transmembrane conduetance regulator. J Biol Chem 267:10465– 10469

    PubMed  CAS  Google Scholar 

  33. Brezillon S, Dupuit F, Hinnrasky J, Marchand V, Kälin N, Tümmler B, Puchelle E (1995) Decreased expression of the CFTR protein in remodeled human nasal epithelium from non-cystic fibrosis patients. Lab Invest 72:191 –200

    PubMed  CAS  Google Scholar 

  34. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ Channel is made of three homologous subunits. Nature 367:463 – 467

    PubMed  CAS  Google Scholar 

  35. Cantiello HF, Jackson GR, Jr, Grosman CF, Prat AG, Borkan SC, Wang Y, Reisin IL, O’Riordan CR, Ausiello DA (1998) Electrodiffusional ATP movement through the cystic fibrosis transmembrane conduetance regulator. Am J Physiol 274:C799 – 809

    PubMed  CAS  Google Scholar 

  36. Carson MR, Travis SM, Welsh MJ (1995) The two nucleotide-binding domains of cystic fibrosis transmembrane conduetance regulator (CFTR) have distinet funetions in Controlling Channel activity. J Biol Chem 270:1711 –1717

    PubMed  CAS  Google Scholar 

  37. Chang XB, Tabcharani JA, Hou YX, Jensen TJ, Kartner N, Alon N, Hanrahan JW, Riordan JR (1993) Protein kinase A (PKA) still activates CFTR chloride Channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J Biol Chem 268:11304–11311

    PubMed  CAS  Google Scholar 

  38. Chang XB, Hou YX, Jensen TJ, Riordan JR (1994) Mapping of cystic fibrosis transmembrane conduetance regulator membrane topology by glycosylation site insertion. J Biol Chem 269:18572–18575

    PubMed  CAS  Google Scholar 

  39. Chen M, Zhang JT (1999) Topogenesis of cystic fibrosis transmembrane conduetance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Biochemistry 38:5471 – 5477

    PubMed  CAS  Google Scholar 

  40. Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC (1989) Increased sulfation of glycoconjugates by eultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84:68–72

    PubMed  CAS  Google Scholar 

  41. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O'Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    PubMed  CAS  Google Scholar 

  42. Cheng SH, Rieh DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR Chloride Channel. Cell 66:1027–1036

    PubMed  CAS  Google Scholar 

  43. Cheung M, Akabas MH (1996) Identification of cystic fibrosis transmembrane conduetance regulator channellining residues in and flanking the M6 membranespanning segment. Biophys J 70:2688–2695

    PubMed  CAS  Google Scholar 

  44. Cheung M, Akabas MH (1997) Locating the anion-selec-tivity filter of the cystic fibrosis transmembrane conduetance regulator (CFTR) chloride Channel. J Gen Physiol 109:289–299

    PubMed  CAS  Google Scholar 

  45. Chou JL, Rozmahel R, Tsui LC (1991) Characterization of the promoter region of the cystic fibrosis transmembrane conduetance regulator gene. J Biol Chem 266:24471–24476

    PubMed  CAS  Google Scholar 

  46. Clarke LL, Harline MC (1998) Dual role of CFTR in cAMP-stimulated HCOj secretion across murine duodenum. Am J Physiol 274:G718–726

    PubMed  CAS  Google Scholar 

  47. Cliff WH, Frizzell RA (1990) Separate Cl¯ conduetances activated by cAMP and Ca2+ in Cl¯-secreting epithelial cells. Proc Natl Acad Sei USA 87:4956–4960

    CAS  Google Scholar 

  48. Cohn JA, Melhus O, Page LJ, Dittrich KL, Vigna SR (1991) CFTR: development of high-affinity antibodies and localization in sweat gland. Biochem Biophys Res Commun 181:36–43

    PubMed  CAS  Google Scholar 

  49. Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG (1993) Localization of the cystic fibrosis transmembrane conduetance regulator in human bile duet epithelial cells. Gastroenterology 105:1857–1864

    PubMed  CAS  Google Scholar 

  50. Cotten JF, Welsh MJ (1999) Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge. J Biol Chem 274:5429–5435

    PubMed  CAS  Google Scholar 

  51. Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF (1991) Im-munocytochemical localization of the cystic fibrosis gene produet CFTR. Proc Natl Acad Sei USA 88:9262–9266

    CAS  Google Scholar 

  52. Cremonesi L, Ferrari M, Belloni E, Magnani C, Seia M, Ronchetto P, Rady M, Russo MP, Romeo G, Devoto M (1992) Four new mutations of the CFTR gene (541delC, R347H, R352Q, E585X) detected by DGGE analysis in Italian CF patients, associated with different clinical phenotypes. Hum Mutat 1:314–319

    PubMed  CAS  Google Scholar 

  53. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion Channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature 354:526 –528

    PubMed  Google Scholar 

  54. Dean M, White MB, Arnos J, Gerrard B, Stewart C, Khaw KT, Leppert M (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61:863 – 870

    PubMed  CAS  Google Scholar 

  55. Delaney SJ, Koopman P, Lovelock PK, Wainwright BJ (1994) Alternative splicing of the first nucleotide binding fold of CFTR in mouse testes is associated with specific stages of spermatogenesis. Genomics 20:517–518

    PubMed  CAS  Google Scholar 

  56. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conduetance regulator is temperature-sensitive. Nature 358:761 – 764

    PubMed  CAS  Google Scholar 

  57. Devidas S, Guggino WB (1997) CFTR: domains, structure, and funetion. J Bioenerg Biomembr 29:443–451

    PubMed  CAS  Google Scholar 

  58. diSant’Agnese PA, Darling RC, Perrera GA, Shea E (1953) Abnormal electrolytic composition of sweat in cystic fibrosis of the pancreas: clinical significance and relationship to the disease. Pediatrics 12:549–563

    Google Scholar 

  59. Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR (1997) Ezrin is a cyclic AMPdependent protein kinase anchoring protein. EMBO J 16:35–43

    PubMed  CAS  Google Scholar 

  60. Dray-Charier N, Paul A, Veissiere D, Mergey M, Scoazec JY, Capeau J, Brahimi-Horn C, Housset C (1995) Expression of cystic fibrosis transmembrane conduetance regulator in human gallbladder epithelial cells. Lab Invest 73: 828–836

    PubMed  CAS  Google Scholar 

  61. Dupuit F, Kälin N, Brezillon S, Hinnrasky J, Tümmler B, Puchelle E (1995) CFTR and differentiation markers expression in non-CF and delta F 508 homozygous CF nasal epithelium. J Clin Invest 96:1601 –1611

    PubMed  CAS  Google Scholar 

  62. Egan M, Flotte T, Afione S, Solow R, Zeitlin PL, Carter BJ, Guggino WB (1992) Defective regulation of outwardly rectifying Cl¯ Channels by protein kinase A corrected by insertion of CFTR. Nature 358:581 – 584

    PubMed  CAS  Google Scholar 

  63. Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC, Cohn JA, Wilson JM (1992) Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 2:240 – 248

    PubMed  CAS  Google Scholar 

  64. Eskandari S, Snyder PM, Kreman M, Zampighi GA, Welsh MJ, Wright EM (1999) Number of subunits comprising the epithelial sodium Channel. J Biol Chem 274:27281–27286

    PubMed  CAS  Google Scholar 

  65. Fischer H, Machen TE (1994) CFTR displays voltage dependence and two gating modes during Stimulation. J Gen Physiol 104:541–566

    PubMed  CAS  Google Scholar 

  66. Fischer H, Illek B, Machen TE (1995) The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conduetance regulator Cl¯ Channel in mouse 3T3 fibroblasts. J Physiol (Lond) 489: 745–754

    CAS  Google Scholar 

  67. Foulkes AG, Harris A (1993) Localization of expression of the cystic fibrosis gene in human pancreatic development. Pancreas 8:3–6

    PubMed  CAS  Google Scholar 

  68. Frizzell RA, Rechkemmer G, Shoemaker RL (1986) Altered regulation of airway epithelial cell chloride Channels in cystic fibrosis. Science 233:558–560

    PubMed  CAS  Google Scholar 

  69. Gadsby DC, Nairn AC (1994) Regulation of CFTR Channel gating. Trends Biochem Sci 19:513–518

    PubMed  CAS  Google Scholar 

  70. Gendler SJ, Spicer AP (1995) Epithelial mucin genes. Annu Rev Physiol 57:607 – 634

    PubMed  CAS  Google Scholar 

  71. Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing Pilocarpine by iontophoresis. Pediatrics 23:545–549

    PubMed  CAS  Google Scholar 

  72. Gottlieb RA, Dosanjh A (1996) Mutant cystic fibrosis transmembrane conduetance regulator inhibits aeidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci USA 93:3587–3591

    PubMed  CAS  Google Scholar 

  73. Greger R, Mall M, Bleich M, Ecke D, Warth R, Riedemann N, Kunzelmann K (1996) Regulation of epithelial ion Channels by the cystic fibrosis transmembrane conduetance regulator. J Mol Med 74:527 – 534

    PubMed  CAS  Google Scholar 

  74. Grubb BR, Gabriel SE (1997) Intestinal physiology and pathology in gene-targeted mouse modeis of cystic fibrosis. Am J Physiol 273:G258 – 266

    PubMed  CAS  Google Scholar 

  75. Grubb BR, Vick RN, Boucher RC (1994) Hyperabsorption of Na+ and raised Ca2+-mediated Cl¯ secretion in nasal epithelia of CF mice. Am J Physiol 266:C1478 –1483

    CAS  Google Scholar 

  76. Grygorczyk R, Tabcharani JA, Hanrahan JW (1996) CFTR Channels expressed in CHO cells do not have detectable ATP conduetance. J Membr Biol 151:139–148

    PubMed  CAS  Google Scholar 

  77. Guba M, Kuhn M, Forssmann WG, Classen M, Gregor M, Seidler U (1996) Guanylin strongly stimulates rat duodenal HC03 secretion: proposed mechanism and comparison with other secretagogues. Gastroenterology 111:1558–1568

    PubMed  CAS  Google Scholar 

  78. Guggino WB (1993) Outwardly rectifying chloride Channels and CF: a divorce and remarriage. J Bioenerg Biomembr 25:27–35

    PubMed  CAS  Google Scholar 

  79. Gunderson KL, Kopito RR (1995) Conformational states of CFTR associated with Channel gating: the role ATP binding and hydrolysis. Cell 82:231–239

    PubMed  CAS  Google Scholar 

  80. Harris A, Chalkley G, Goodman S, Coleman L (1991) Expression of the cystic fibrosis gene in human development. Development 113:305 – 310

    PubMed  CAS  Google Scholar 

  81. Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous Channel formed by CFTR. Science 258:1477–1479

    PubMed  CAS  Google Scholar 

  82. He X, Tse CM, Donowitz M, Alper SL, Gabriel SE, Baum BJ (1997) Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflügers Arch 433:260–268

    PubMed  CAS  Google Scholar 

  83. Higgins CF (1995) The ABC of Channel regulation. Cell 82:693–696

    PubMed  CAS  Google Scholar 

  84. Hincke MT, Nairn AC, Staines WA (1995) Cystic fibrosis transmembrane conductance regulator is found within brain ventricular epithelium and choroid plexus. J Neurochem 64:1662–1668

    PubMed  CAS  Google Scholar 

  85. Holmberg C, Perheentupa J, Launiala K (1975) Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Invest 56:302–310

    PubMed  CAS  Google Scholar 

  86. Horowitz B, Tsung SS, Hart P, Levesque PC, Hume JR (1993) Alternative splicing of CFTR Cl¯ Channels in heart. Am J Physiol 264:H2214–2220

    PubMed  CAS  Google Scholar 

  87. Huber S, Braun G, Burger-Kentischer A, Reinhart B, Luckow B, Horster M (1998) CFTR mRNA and its truncated splice variant (TRN-CFTR) are differentially expressed during collecting duct ontogeny. FEBS Lett 423:362–366

    PubMed  CAS  Google Scholar 

  88. Hug T, Koslowsky T, Ecke D, Greger R, Kunzelmann K (1995) Actindependent activation of ion conductances in bronchial epithelial cells. Pflügers Arch 429:682–690

    PubMed  CAS  Google Scholar 

  89. Hume JR, Horowitz B (1995) A plethora of cardiac chloride conductances: molecular diversity or a related gene family. J Cardiovasc Electrophysiol 6:325 – 331

    PubMed  CAS  Google Scholar 

  90. Hung LW, Wang IX, Nikaido K, Liu PQ, Arnes GF, Kim SH (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396:703 – 707

    PubMed  CAS  Google Scholar 

  91. Hwang TC, Lu L, Zeitlin PL, Gruenert DC, Huganir R, Guggino WB (1989) Cl-Channels in CF: lack of activation by protein kinase C and cAMP-dependent protein kinase. Science 244:1351–1353

    PubMed  CAS  Google Scholar 

  92. Hwang TC, Horie M, Gadsby DC (1993) Functionally distinct phospho-forms underlie incremental activation of protein kinaseregulated Cl conductance in mammalian heart. J Gen Physiol 101:629–650

    PubMed  CAS  Google Scholar 

  93. Hwang TC, Nagel G, Nairn AC, Gadsby DC (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator Cl Channels by phosphorylation and ATP hydrolysis. Proc Natl Acad Sci USA 91:4698–4702

    PubMed  CAS  Google Scholar 

  94. Hwang TC, Wang F, Yang IC, Reenstra WW (1997) Genistein potentiates wild-type and delta F508-CFTR Channel activity. Am J Physiol 273:C988 – 998

    PubMed  CAS  Google Scholar 

  95. Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365

    PubMed  CAS  Google Scholar 

  96. Illek B, Fischer H, Santos GF,Widdicombe JH, Machen TE, Reenstra WW (1995) cAMP-independent activation of CFTR Cl Channels by the tyrosine kinase inhibitor genistein. Am J Physiol 268:C886 – 893

    PubMed  CAS  Google Scholar 

  97. Illek B, Yankaskas JR, Machen TE (1997) cAMP and genistein stimulate HCO- 3 conductance through CFTR in human airway epithelia. Am J Physiol 272:L752 – 761

    PubMed  CAS  Google Scholar 

  98. Imundo L, Barasch J, Prince A, Al-Awqati Q (1995) Cystic fibrosis epithelial cells have a reeeptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sei USA 92:3019–3023

    CAS  Google Scholar 

  99. Ishida-Takahashi A, Otani H, Takahashi C, Washizuka T, Tsuji K, Noda M, Horie M, Sasayama S (1998) Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ Channel kir6.1. J Physiol (Lond) 508:23–30

    CAS  Google Scholar 

  100. Ismailov, II, Awayda MS, Jovov B, Berdiev BK, Fuller CM, Dedman JR, Kaetzel M, Benos DJ (1996) Regulation of epithelial sodium Channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:4725–4732

    PubMed  CAS  Google Scholar 

  101. Ismailov, II, Berdiev BK, Shlyonsky VG, Fuller CM, Prat AG, Jovov B, Cantiello HF, Ausiello DA, Benos DJ (1997) Role of actin in regulation of epithelial sodium Channels by CFTR. Am J Physiol 272:C1077–1086

    PubMed  CAS  Google Scholar 

  102. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic Systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    PubMed  CAS  Google Scholar 

  103. Jia Y, Mathews CJ, Hanrahan JW (1997) Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J Biol Chem 272:4978–4984

    PubMed  CAS  Google Scholar 

  104. Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF (1998) Cystic fibrosis transmembrane conductance regulatorassociated ATP release is controlled by a chloride sensor. J Cell Biol 143:645–657

    PubMed  CAS  Google Scholar 

  105. Johannesson M, Bogdanovic N, Nordqvist AC, Hjelte L, Schalling M (1997) Cystic fibrosis mRNA expression in rat brain: cerebral cortex and medial preoptic area. Neuroreport 8:535–539

    PubMed  CAS  Google Scholar 

  106. Kälin N, Claaß A, Sommer M, Puchelle E, Tümmler B (1999) DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest 103:1379–1389

    PubMed  Google Scholar 

  107. Kato Y, Spiro RG (1989) Characterization of a thyroid sulfotransferase responsible for the 3-O-sulfation of terminal beta-D-galactosyl residues in N-linked carbohydrate units. J Biol Chem 264:3364 – 3371

    PubMed  CAS  Google Scholar 

  108. Kibble JD, Trezise AE, Brown PD (1996) Properties of the cAMP-activated Cl¯ current in choroid plexus epithelial cells isolated from the rat. J Physiol (Lond) 496:69–80

    CAS  Google Scholar 

  109. Kibble JD, Garner C, Colledge WH, Brown S, Kajita H, Evans M, Brown PD (1997) Whole cell Cl- conductances in mouse choroid plexus epithelial cells do not require CFTR expression. Am J Physiol 272:C1899–1907

    CAS  Google Scholar 

  110. Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221:1067–1070

    PubMed  CAS  Google Scholar 

  111. Ko YH, Thomas PJ, Pedersen PL (1994) The cystic fibrosis transmembrane conductance regulator. Nucleotide binding to a synthetic peptide segment from the second predicted nucleotide binding fold. J Biol Chem 269:14584 – 14588

    PubMed  CAS  Google Scholar 

  112. Ko YH, Delannoy M, Pedersen PL (1997) Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding funetion. Biochemistry 36:5053 – 5064

    Google Scholar 

  113. Koh J, Sferra TJ, Collins FS (1993) Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specifi-city. J Biol Chem 268:15912 –15921

    PubMed  CAS  Google Scholar 

  114. Krivan HC, Ginsburg V, Roberts DD (1988) Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys 260:493–496

    PubMed  CAS  Google Scholar 

  115. Kunzelmann K, Kiser GL, Schreiber R, Riordan JR (1997) Inhibition of epithelial Na+ currents by intracellular domains of the cystic fibrosis transmembrane conductance regulator. FEBS Lett 400:341 – 344

    PubMed  CAS  Google Scholar 

  116. Kuver R, Ramesh N, Lau S, Savard C, Lee SP, Osborne WR (1994) Constitutive mucin secretion linked to CFTR expression. Biochem Biophys Res Commun 203:1457–1462

    CAS  Google Scholar 

  117. Lee MG, Choi JY, Luo X, Strickland E, Thomas PJ, Muallem S (1999) Cystic fibrosis transmembrane conductance regulator regulates luminal CI-/HCO- 3 exchange in mouse submandibular and pancreatic ducts. J Biol Chem 274:14670–14677

    PubMed  CAS  Google Scholar 

  118. Lee MG, Wigley WC, Zeng W, Noel LE, Marino CR, Thomas PJ, Muallem S (1999) Regulation of CI-/HCO- 3 exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J Biol Chem 274:3414–3421

    PubMed  CAS  Google Scholar 

  119. Li C, Ramjeesingh M, Bear CE (1996) Purified cystic fibrosis transmembrane conductance regulator (CFTR) does not function as an ATP Channel. J Biol Chem 271:11623–11626

    PubMed  CAS  Google Scholar 

  120. Li M, McCann JD, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic AMP-dependent protein kinase opens chloride Channels in normal but not cystic fibrosis airway epithelium. Nature 331:358 – 360

    PubMed  CAS  Google Scholar 

  121. Li M, McCann JD, Anderson MP, Clancy JP, Liedtke CM, Nairn AC, Greengard P, Welsch MJ (1989) Regulation of chloride Channels by protein kinase C in normal and cystic fibrosis airway epithelia. Science 244:1353–1356

    PubMed  CAS  Google Scholar 

  122. Linsdell P, Hanrahan JW (1996) Flickery block of Single CFTR chloride Channels by intracellular anions and osmoly tes. Am J Physiol 271:C628 – 634

    PubMed  CAS  Google Scholar 

  123. Linsdell P, Hanrahan JW (1998) Glutathione permeability of CFTR. Am J Physiol 275:C323 – 326

    PubMed  CAS  Google Scholar 

  124. Lloyd Mills C, Pereira MM, Dormer RL, McPherson MA (1992) An antibody against a CFTR-derived synthetic peptide, incorporated into living submandibular cells, in hibits betaadrenergic Stimulation of mucin secretion. Biochem Biophys Res Commun 188:1146–1152

    Google Scholar 

  125. Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17:6879–6887

    PubMed  CAS  Google Scholar 

  126. Loussouarn G, Demolombe S, Mohammad-Panah R, Escande D, Baro I (1996) Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents. Am J Physiol 271:C1565–1573

    PubMed  CAS  Google Scholar 

  127. Lu Y, Xiong X, Helm A, Kimani K, Bragin A, Skach WR (1998) Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly. J Biol Chem 273:568–576

    PubMed  CAS  Google Scholar 

  128. Lukacs GL, Chang XB, Kartner N, Rotstein OD, Riordan JR, Grinstein S (1992) The cystic fibrosis transmembrane regulator is present and functional in endosomes. Role as a determinant of endosomal pH. J Biol Chem 267: 14568–14572

    PubMed  CAS  Google Scholar 

  129. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, Riordan JR, Grinstein S (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional halflives on transfected cells. J Biol Chem 268:21592–21598

    PubMed  CAS  Google Scholar 

  130. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076–6086

    PubMed  CAS  Google Scholar 

  131. Lukacs GL, Segal G, Kartner N, Grinstein S, Zhang F (1997) Constitutive internalization of cystic fibrosis transmembrane conductance regulator occurs via clathrindependent endocytosis and is regulated by protein phosphorylation. Biochem J 328:353 – 361

    Google Scholar 

  132. Luo J, Pato MD, Riordan JR, Hanrahan JW (1998) Differential regulation of Single CFTR Channels by PP2 C, PP2 A, and other phosphatases. Am J Physiol 274:C1397– 1410

    PubMed  CAS  Google Scholar 

  133. Mall M, Kunzelmann K, Hipper A, Busch AE, Greger R (1996) cAMP Stimulation of CFTR-expressing Xenopus oocytes activates a chromanol-inhibitable K+ conductance. Pflügers Arch 432:516–522

    PubMed  CAS  Google Scholar 

  134. Mathews CJ, Tabcharani JA, Chang XB, Jensen TJ, Riordan JR, Hanrahan JW (1998) Dibasic protein kinase A sites regulate bursting rate and nucleotide sensitivity of the cystic fibrosis transmembrane conductance regulator chloride Channel. J Physiol (Lond) 508:365–377

    CAS  Google Scholar 

  135. Matthews RP, McKnight GS (1996) Characterization of the cAMP response dement of the cystic fibrosis transmembrane conductance regulator gene promoter. J Biol Chem 271:31869–31877

    PubMed  CAS  Google Scholar 

  136. McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA (1993) Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl¯ Channel by two closely related arylaminobenzoates. J Gen Physiol 102:1–23

    PubMed  CAS  Google Scholar 

  137. McCray PB, Jr, Reenstra WW, Louie E, Johnson J, Bettencourt JD, Bastacky J (1992) Expression of CFTR and presence of cAMP-mediated fluid secretion in human fetal lung. Am J Physiol 262:L472–481

    PubMed  CAS  Google Scholar 

  138. McCray PB, Jr, Wohlford-Lenane CL, Snyder JM (1992) Localization of cystic fibrosis transmembrane conductance regulator mRNA in human fetal lung tissue by in situ hybridization. J Clin Invest 90:619–625

    PubMed  CAS  Google Scholar 

  139. McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ Channel (ROMK2) to the inhibitory sulfonylurea Compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93: 8083–8088

    PubMed  CAS  Google Scholar 

  140. McNicholas CM, Nason MW, Jr, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1997) A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. Am J Physiol 273: F843 – 848

    PubMed  CAS  Google Scholar 

  141. McPherson MA, Dormer RL, Bradbury NA, Dodge JA, Goodchild MC (1986) Defective betaadrenergic secretory responses in submandibular acinar cells from cystic fibrosis patients. Lancet 2:1007 –1008

    PubMed  CAS  Google Scholar 

  142. Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early Steps in CFTR biogenesis. EMBO J 18:1492–1505

    PubMed  CAS  Google Scholar 

  143. Mimura CS, Holbrook SR, Arnes GF (1991) Structural model of the nucleotide-binding conserved component of periplasmic permeases. Proc Natl Acad Sci USA 88:84–88

    PubMed  CAS  Google Scholar 

  144. Mohapatra NK, Cheng PW, Parker JC, Paradiso AM, Yankaskas JR, Boucher RC, Boat TF (1995) Alteration of sulfation of glycoconjugates, but not sulfate transport and intracellular inorganic sulfate content in cystic fibrosis airway epithelial cells. Pediatr Res 38:42–48

    PubMed  CAS  Google Scholar 

  145. Morales MM, Carroll TP, Morita T, Schwiebert EM, Devuyst O, Wilson PD, Lopes AG, Stanton BA, Dietz HC, Cutting GR, Guggino WB (1996) Both the wild type and a functional isoform of CFTR are expressed in kidney. Am JPhysiol 270:F1038–1048

    CAS  Google Scholar 

  146. Moseley RH, Hoglund P, Wu GD, Silberg DG, Haila S, de la Chapelle A, Holmberg C, Kere J (1999) Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am J Physiol 276:G185–192

    PubMed  CAS  Google Scholar 

  147. Moyer BD, Denton J, Karlson KH, Reynolds D, Wang S, Mickle JE, Milewski M, Cutting GR, Guggino WB, Li M, Stanton BA (1999) A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Invest 104:1353–1361

    PubMed  CAS  Google Scholar 

  148. Mulberg AE, Wiedner EB, Bao X, Marshall J, Jefferson DM, Altschuler SM (1994) Cystic fibrosis transmembrane conductance regulator protein expression in brain. Neuroreport 5:1684–1688

    PubMed  CAS  Google Scholar 

  149. Mulberg AE, Resta LP, Wiedner EB, Altschuler SM, Jefferson DM, Broussard DL (1995) Expression and localization of the cystic fibrosis transmembrane conductance regulator mRNA and its protein in rat brain. J Clin Invest 96:646–652

    PubMed  CAS  Google Scholar 

  150. Mulberg AE, Weyler RT, Altschuler SM, Hyde TM (1998) Cystic fibrosis transmembrane conductance regulator expression in human hypothalamus. Neuroreport 9:141–144

    PubMed  CAS  Google Scholar 

  151. Nagel G, Hwang TC, Nastiuk KL, Nairn AC, Gadsby DC (1992) The protein kinase A-regulated cardiac Cl¯ channel resembles the cystic fibrosis transmembrane conductance regulator. Nature 360:81 – 84

    PubMed  CAS  Google Scholar 

  152. Naren AP, Nelson DJ, Xie W, Jovov B, Pevsner J, Bennett MK, Benos DJ, Quick MW, Kirk KL (1997) Regulation of CFTR chloride Channels by syntaxin and Muncl8 isoforms. Nature 390:302–305

    PubMed  CAS  Google Scholar 

  153. Naren AP, Quick MW, Collawn JF, Nelson DJ, Kirk KL (1998) Syntaxin 1 A inhibits CFTR chloride channels by means of domain-specific protein-protein interactions. Proc Natl Acad Sci USA 95:10972–10977

    PubMed  CAS  Google Scholar 

  154. Naren AP, Cormet-Boyaka E, Fu J, Villain M, Blalock JE, Quick MW, Kirk KL (1999) CFTR chloride Channel regulation by an interdomain interaction. Science 286: 544–548

    PubMed  CAS  Google Scholar 

  155. Nuthall HN, Moulin DS, Huxley C, Harris A (1999) Analysis of DNase-I-hypersensitive sites at the 3′ end of the cystic fibrosis transmembrane conductance regulator gene (CFTR). Biochem J 341:601–611

    PubMed  CAS  Google Scholar 

  156. Ou WJ, Cameron PH, Thomas DY, Bergeron JJ (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776

    PubMed  CAS  Google Scholar 

  157. Pasyk EA, Foskett JK (1995) Mutant (delta F508) cystic fibrosis transmembrane conductance regulator Cl¯ channel is functional when retained in endoplasmic reticulum of mammalian cells. J Biol Chem 270:12347−12350

    PubMed  Google Scholar 

  158. Pasyk EA, Foskett JK (1997) Cystic fibrosis transmembrane conductance regulator-associated ATP and adenosine 3′-phosphate 5′-phosphosulfate channels in endoplasmic reticulum and plasma membranes. J Biol Chem 272:7746–7751

    PubMed  CAS  Google Scholar 

  159. Perraud F, Yoshimura K, Louis B, Dalemans W, Ali-Hadji D, Schultz H, Claudepierre MC, Chartier C, Danel C, Bellocq JP, Crystal RG, Lecocq JP, Pavirani A (1992) The Promoter of the human cystic fibrosis transmembrane conductance regulator gene directing SV40 T antigen expression induces malignant proliferation of ependymal cells in transgenic mice. Oncogene 7:993–997

    PubMed  CAS  Google Scholar 

  160. Picciotto MR, Cohn JA, Bertuzzi G, Greengard P, Nairn AC (1992) Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 267: 12742–12752

    PubMed  CAS  Google Scholar 

  161. Pier GB, Grout M, Zaidi TS (1997) Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci USA 94:12088–12093

    PubMed  CAS  Google Scholar 

  162. Pier GB, Grout M, Zaidi T, Meluleni G, Müschenborn SS, Banting G, Ratcliff R, Evans MJ, Colledge WH (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393:79–82

    PubMed  CAS  Google Scholar 

  163. Pilewski JM, Frizzell RA (1999) Role of CFTR in airway disease. Physiol Rev 79:S215–255

    PubMed  CAS  Google Scholar 

  164. Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:12784–12788

    PubMed  CAS  Google Scholar 

  165. Pittman N, Shue G, LeLeiko NS, Walsh MJ (1995) Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation. J Biol Chem 270: 28848–28857

    PubMed  CAS  Google Scholar 

  166. Prat AG, Xiao YF, Ausiello DA, Cantiello HF (1995) cAMP-independent regulation of CFTR by the actin cytoskeleton. Am J Physiol 268:C1552–1561

    PubMed  CAS  Google Scholar 

  167. Prat AG, Reisin IL, Ausiello DA, Cantiello HF (1996) Cellular ATP release by the cystic fibrosis transmembrane conductance regulator. Am J Physiol 270: C538–545

    PubMed  CAS  Google Scholar 

  168. Prince LS, Welsh MJ (1998) Cell surface expression and biosynthesis of epithelial Na+ Channels. Biochem J 336: 705–710

    PubMed  CAS  Google Scholar 

  169. Prince LS, Peter K, Hatton SR, Zaliauskiene L, Cotlin LF, Clancy JP, Marchase RB, Collawn JF (1999) Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal. J Biol Chem 274:3602–3609

    PubMed  CAS  Google Scholar 

  170. Puchelle E, Gaillard D, Ploton D, Hinnrasky J, Fuchey C, Boutterin MC, Jacquot J, Dreyer D, Pavirani A, Dalemans W (1992) Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol 7:485–491

    PubMed  CAS  Google Scholar 

  171. Quinton PM, Bijman J (1983) Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N Engl J Med 308: 1185–1189

    PubMed  CAS  Google Scholar 

  172. Quinton PM, Reddy MM (1989) Cl¯ conductance and aeid secretion in the human sweat duct. Ann NY Acad Sci 574: 438–446

    PubMed  CAS  Google Scholar 

  173. Ramjeesingh M, Li C, Garami E, Huan LJ, Hewryk M, Wang Y, Galley K, Bear CE (1997) A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR). Biochem J 327:17–21

    PubMed  CAS  Google Scholar 

  174. Randak C, Roscher AA, Hadorn HB, Assfalg-Machleidt I, Auerswald EA, Machleidt W (1995) Expression and functional properties of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator fused to glutathione-S-transferase. FEBS Lett 363:189–194

    PubMed  CAS  Google Scholar 

  175. Randak C, Neth P, Auerswald EA, Assfalg-Machleidt I, Roscher AA, Hadorn HB, Machleidt W (1996) A recombinant polypeptide model of the second predicted nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is a GTP-binding protein. FEBS Lett 398:97–100

    PubMed  CAS  Google Scholar 

  176. Randak C, Neth P, Auerswald EA, Eckerskorn C, Assfalg-Machleidt I, Machleidt W (1997) A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett 410:180–186

    PubMed  CAS  Google Scholar 

  177. Reddy MM, Quinton PM (1996) Deactivation of CFTR-Cl conductance by endogenous phosphatases in the native sweat duct. Am J Physiol 270: C474–480

    PubMed  CAS  Google Scholar 

  178. Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271: 1876–1879

    PubMed  CAS  Google Scholar 

  179. Reddy MM, Bell CL, Quinton PM (1997) Cystic fibrosis affects specific cell type in sweat gland secretory coil. Am J Physiol 273:0426–433

    Google Scholar 

  180. Reddy MM, Light MJ, Quinton PM (1999) Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl¯ channel function. Nature 402:301–304

    PubMed  CAS  Google Scholar 

  181. Reisin IL, Prat AG, Abraham EH, Amara JF, Gregory RJ, Ausiello DA, Cantiello HF (1994) The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel. J Biol Chem 269:20584–20591

    PubMed  CAS  Google Scholar 

  182. Rich DP, Berger HA, Cheng SH, Travis SM, Saxena M, Smith AE, Welsh MJ (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl¯ channel by negative charge in the R domain. J Biol Chem 268: 20259–20267

    PubMed  CAS  Google Scholar 

  183. Rich DP, Gregory RJ, Cheng SH, Smith AE, Welsh MJ (1993) Effect of deletion mutations on the function of CFTR chloride channels. Receptors Channels 1:221–232

    PubMed  CAS  Google Scholar 

  184. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    PubMed  CAS  Google Scholar 

  185. Ruknudin A, Schulze DH, Sullivan SK, Lederer WJ, Welling PA (1998) Novel subunit composition of a renal epithelial KATP channel. J Biol Chem 273:14165–14171

    PubMed  CAS  Google Scholar 

  186. Saiman L, Prince A (1993) Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92:1875–1880

    PubMed  CAS  Google Scholar 

  187. Samet JM, Cheng PW (1994) The role of airway mucus in pulmonary toxicology. Environ Health Perspect 102 (Suppl 2):89–103

    PubMed  Google Scholar 

  188. Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RW, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752–754

    PubMed  CAS  Google Scholar 

  189. Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K (1999) The first-nucleotide binding domain of the cysticfibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc Natl Acad Sci USA 96:5310–5315

    PubMed  CAS  Google Scholar 

  190. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autoerine mechanism involving ATP. Cell 81:1063–1073

    PubMed  CAS  Google Scholar 

  191. Scoazec JY, Bringuier AF, Medina JF, Martinez-Anso E, Veissiere D, Feldmann G, Housset C (1997) The plasma membrane polarity of human biliary epithelial cells: in situ immunohistochemical analysis and functional implications. J Hepatol 26:543–553

    PubMed  CAS  Google Scholar 

  192. Seibert FS, Tabcharani JA, Chang XB, Dulhanty AM, Mathews C, Hanrahan JW, Riordan JR (1995) cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation. J Biol Chem 270:2158–2162

    PubMed  CAS  Google Scholar 

  193. Seidler U, Blumenstein I, Kretz A, Viellard-Baron D, Rossmann H, Colledge WH, Evans M, Ratcliff R, Gregor M (1997) A functional CFTR protein is required for mouse intestinal cAMP-, cGMP- and Ca2+-dependent HCO3¯ secretion. J Physiol (Lond) 505:411–423

    CAS  Google Scholar 

  194. Seksek O, Biwersi J, Verkman AS (1996) Evidence against defective trans-Golgi acidification in cystic fibrosis. J Biol Chem 271:15542–15548

    PubMed  CAS  Google Scholar 

  195. Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100:573–591

    PubMed  CAS  Google Scholar 

  196. Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl¯ channels with altered pore properties. Nature 362:160–164

    PubMed  CAS  Google Scholar 

  197. Sheppard DN, Ostedgaard LS, Rich DP, Welsh MJ (1994) The amino-terminal portion of CFTR forms a regulated Cl¯ channel. Cell 76:1091–1098

    PubMed  CAS  Google Scholar 

  198. Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-span-ning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271:14995–15001

    PubMed  CAS  Google Scholar 

  199. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273: 19797–19801

    PubMed  CAS  Google Scholar 

  200. Smith AN, Barth ML, McDowell TL, Moulin DS, Nuthall HN, Hollingsworth MA, Harris A (1996) A regulatory element in intron 1 of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem 271:9947–9954

    PubMed  CAS  Google Scholar 

  201. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ (1998) Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273:681–684

    PubMed  CAS  Google Scholar 

  202. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-depen-dent regulator of sodium channels. Science 269:847–850

    PubMed  CAS  Google Scholar 

  203. Sugita M, Yue Y, Foskett JK (1998) CFTR Cl¯ channel and CFTR-associated ATP channel: distinet pores regulated by common gates. EMBO J 17:898–908

    PubMed  CAS  Google Scholar 

  204. Tabcharani JA, Chang XB, Riordan JR, Hanrahan JW (1991) Phosphorylation-regulated Cl¯ channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628–631

    PubMed  CAS  Google Scholar 

  205. Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW (1993) Multi-ion pore behaviour in the CFTR chloride channel. Nature 366:79–82

    PubMed  CAS  Google Scholar 

  206. Takano M, Ishii T, Xie LH (1996) Cloning and functional expression of the rat brain KIR6.2 channel. Jpn J Physiol 46:491–495

    PubMed  CAS  Google Scholar 

  207. Tector M, Hartl FU (1999) An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. EMBO J 18:6290–6298

    PubMed  CAS  Google Scholar 

  208. Thomas PJ, Shenbagamurthi P, Ysern X, Pedersen PL (1991) Cystic fibrosis transmembrane conductance regulator: nucleotide binding to a synthetic peptide. Science 251:555–557

    PubMed  CAS  Google Scholar 

  209. Todd-Turla KM, Rusvai E, Naray-Fejes-Toth A, Fejes-Toth G (1996) CFTR expression in cortical collecting duct cells. Am J Physiol 270: F237–244

    PubMed  Google Scholar 

  210. Trapnell BC, Chu CS, Paakko PK, Banks TC, Yoshimura K, Ferrans VJ, Chernick MS, Crystal RG (1991) Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Proc Natl Acad Sci USA 88:6565–6569

    PubMed  CAS  Google Scholar 

  211. Trapnell BC, Zeitlin PL, Chu CS, Yoshimura K, Nakamura H, Guggino WB, Bargon J, Banks TC, Dalemans W, Pavi-rani A, P. LJ, G. CR (1991) Down-regulation of cystic fibrosis gene mRNA transcript levels and induetion of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J Biol Chem 266:10319–10323

    PubMed  CAS  Google Scholar 

  212. Travis SM, Berger HA, Welsh MJ (1997) Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conduetance regulator. Proc Natl Acad Sci USA 94:11055–11060

    PubMed  CAS  Google Scholar 

  213. Trezise AE, Buchwald M (1991) In vivo cell-specific expression of the cystic fibrosis transmembrane conduetance regulator. Nature 353:434–437

    PubMed  CAS  Google Scholar 

  214. Trezise AE, Romano PR, Gill DR, Hyde SC, Sepulveda FV, Buchwald M, Higgins CF (1992) The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J 11:4291–4303

    PubMed  CAS  Google Scholar 

  215. Trezise AE, Buchwald M, Higgins CF (1993) Testis-specific, alternative splicing of rodent CFTR mRNA. Hum Mol Genet 2:801–802

    PubMed  CAS  Google Scholar 

  216. Trezise AE, Chambers JA, Wardle CJ, Gould S, Harris A (1993) Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet 2:213–218

    PubMed  CAS  Google Scholar 

  217. Trezise AE, Linder CC, Grieger D, Thompson EW, Meunier H, Griswold MD, Buchwald M (1993) CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nat Genet 3: 157–164

    PubMed  CAS  Google Scholar 

  218. Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB, Ehlert EM, Bot AG, Edixhoven M, Boomaars WE, Lohmann SM, de Jonge HR (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conduetance regulator Cl¯ channel activation. Proc Natl Acad Sci USA 95:1466–1471

    PubMed  CAS  Google Scholar 

  219. Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, Cuppens H (1998) Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett 437:1–4

    PubMed  CAS  Google Scholar 

  220. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  221. Wang S, Raab RW, Schatz PJ, Guggino WB, Li M (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C¯ terminal sequence of cystic fibrosis transmembrane conduetance regulator (CFTR). FEBS Lett 427:103–108

    PubMed  CAS  Google Scholar 

  222. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83: 121–127

    PubMed  CAS  Google Scholar 

  223. Warth JD, Collier ML, Hart P, Geary Y, Gelband CH, Chapman T, Horowitz B, Hume JR (1996) CFTR chloride channels in human and simian heart. Cardiovasc Res 31: 615–624

    PubMed  CAS  Google Scholar 

  224. Warth R, Riedemann N, Bleich M, Van Driessche W, Busch AE, Greger R (1996) The cAMP-regulated and 293B-inhi-bited K+ conduetance of rat colonic crypt base cells. Pflügers Arch 432:81–88

    PubMed  CAS  Google Scholar 

  225. Wei LY, Stutts MJ, Hoffman MM, Roepe PD (1995) Over-expression of the cystic fibrosis transmembrane conduetance regulator in NIH 3T3 cells lowers membrane potential and intracellular pH and confers a multidrug resistance phenotype. Biophys J 69:883–895

    PubMed  CAS  Google Scholar 

  226. Welsh MJ (1987) Electrolyte transport by airway epithelia. Physiol Rev 67:1143–1184

    PubMed  CAS  Google Scholar 

  227. Windstetter D, Schaefer F, Scharer K, Reiter K, Eife R, Harms HK, Bertele-Harms R, Fiedler F, Tsui LC, Reitmeir P, Horster M, Hadorn HB (1997) Renal function and renotropic effects of secretin in cystic fibrosis. Eur J Med Res 2:431–436

    PubMed  CAS  Google Scholar 

  228. Winter MC, Welsh MJ (1997) Stimulation of CFTR activity by its phosphorylated R domain. Nature 389: 294–296

    PubMed  CAS  Google Scholar 

  229. Yang Y, Janich S, Cohn JA, Wilson JM (1993) The common variant of cystic fibrosis transmembrane conduetance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci USA 90:9480–9484

    PubMed  CAS  Google Scholar 

  230. Yike I, Ye J, Zhang Y, Manavalan P, Gerken TA, Dearborn DG (1996) A recombinant peptide model of the first nucleotide-binding fold of the cystic fibrosis transmembrane conduetance regulator: comparison of wild- type and delta F508 mutant forms. Protein Sci 5:89–97

    PubMed  CAS  Google Scholar 

  231. Yoshimura K, Nakamura H, Trapnell BC, Chu CS, Dalemans W, Pavirani A, Lecocq JP, Crystal RG (1991) Expression of the cystic fibrosis transmembrane conduetance regulator gene in cells of non-epithelial origin. Nucleic Acids Res 19:5417–5423

    PubMed  CAS  Google Scholar 

  232. Yoshimura K, Nakamura H, Trapnell BC, Dalemans W, Pavirani A, Lecocq JP, Crystal RG (1991) The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem 266:9140–9144

    PubMed  CAS  Google Scholar 

  233. Zhang Y, Doranz B, Yankaskas JR, Engelhardt JF (1995) Genotypic analysis of respiratory mueous sulfation defects in cystic fibrosis. J Clin Invest 96:2997–3004

    PubMed  CAS  Google Scholar 

Liteatur zu 2.4

  1. Arispe N, Rojas E, Hartman J, Sorscher EJ, Pollard HB (1992) Intrinsic anion channel activity of the recombinant first nucleotide binding fold domain of the cystic fibrosis transmembrane regulator protein. Proc Natl Acad Sci USA 89:1539–1543

    PubMed  CAS  Google Scholar 

  2. Berschneider HM, Knowles MR, Azizkhan RG, Boucher RC, Tobey NA, Orlando RC, Powell DW (1988) Altered intestinal chloride transport in cystic fibrosis. FASEB J 2: 2625–2629

    PubMed  CAS  Google Scholar 

  3. Boucher RC, Chinet TC, Willumsen NJ, Knowles MR (1991) Ion transport in normal and CF airway epithelia. Adv Exp Med Biol 290:105–118

    PubMed  CAS  Google Scholar 

  4. Boucher RC, Cotton CU, Gatzy JT, Knowles MR, Yankaskas JR (1988) Evidence for reduced Cl¯ and increased Na+ permeability in cystic fibrosis human primary cell cultures. J Physiol 405:77–103

    PubMed  CAS  Google Scholar 

  5. Chanson M, Scerri I, Suter S (1999) Defective regulation of gap junctional coupling in cystic fibrosis pancreatic duct cells. J Clin Invest 103:1677–1684

    PubMed  CAS  Google Scholar 

  6. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White G, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of the molecular basis of most cystic fibrosis. Cell 63:827–834

    PubMed  CAS  Google Scholar 

  7. Clarke LL, Harline MC (1996) CFTR is required for cAMP inhibition of intestinal Na+ absorption in a cystic fibrosis mouse model. Am J Physiol 270: G259–67

    PubMed  CAS  Google Scholar 

  8. Cohen BE, Lee Jacobson KA, Kim YC, Huang Z, Sorscher EJ, Pollard HB (1997) 8-cyclopentyl-l,3-dipropylxanthine and other xanthines differentially bind to the wild-type and deltaF508 mutant first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conduetance regulator. Biochemistry 36:6455–6461

    PubMed  CAS  Google Scholar 

  9. Dawson DC, Smith SS, Mansoura MK (1999) CFTR: mechanism of anion conduction. Physiol Rev 79: S47–S75

    PubMed  CAS  Google Scholar 

  10. Gadsby DC, Nairn AC (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 79:S77–S107

    PubMed  CAS  Google Scholar 

  11. Gao L, Kim KJ, Yankaskas JR, Forman HJ (1999) Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 277:L113–L118

    PubMed  CAS  Google Scholar 

  12. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolu-tion current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    PubMed  CAS  Google Scholar 

  13. Hardcastle J, Hardcastle PT, Taylor CJ, Goldhill J (1991) Failure of cholinergic stimulation to induce a secretory response from the rectal mucosa in cystic fibrosis. Gut 32: 1035–1039

    PubMed  CAS  Google Scholar 

  14. Hwang TC, Lu L, Zeitlin PL, Gruenert DC, Huganir R, Guggino WB (1989) Cl¯ channels in CF: Lack of activation by protein kinase C and cAMP — dependent protein kinase. Science 244:1351–1353

    PubMed  CAS  Google Scholar 

  15. Illek B, Fischer H (1998) Flavonoids stimulate Cl conductance of human airway epithelium in vitro and in vivo [In Process Citation]. Am J Physiol 275:L902–10

    PubMed  CAS  Google Scholar 

  16. Ishida-Takahashi A, Otani H, Takahashi C, Washizuka T, Tsuji K, Noda M, Horie M, Sasayama S (1998) Cystic flbrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1. J Physiol (Lond) 508:23–30

    CAS  Google Scholar 

  17. Jiang Q, Mak D, Devidas S, Schwiebert EM, Bragin A, Zhang Y, Skach WR, Guggino WB, Foskett JK, Engelhardt JF (1998) Cystic fibrosis transmembrane conductance regu-lator-associated ATP release is controlled by a chloride sensor. J Cell Biol 143:645–657

    PubMed  CAS  Google Scholar 

  18. Julien M, Verrier B, Cerutti M, Chappe V, Gola M, Devau-chelle G, Becq F (1999) Cystic flbrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells. J Membr Biol 168:229–239

    PubMed  CAS  Google Scholar 

  19. Kalin N, Claass A, Sommer M, Puchelle E, Tummler B (1999) DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis [see comments]. J Clin Invest 103:1379–1389

    PubMed  CAS  Google Scholar 

  20. Kerem BS, Rommens M, Buchanan J, Markiewicz D, Cox T, Aravinda C, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080

    PubMed  CAS  Google Scholar 

  21. Krick W, Disser J, Hazama A, Burckhardt G, Frömter E (1991) Evidence for a cytosolic inhibitor of epithelial chloride channels. Pflügers Arch 418:491–499

    PubMed  CAS  Google Scholar 

  22. Kunzelmann K (1999) The Cystic Fibrosis Transmembrane Conductance Regulator and its function in epithelial transport. Rev Physiol Biochem Pharmacol 137:1–70

    PubMed  CAS  Google Scholar 

  23. Kunzelmann K, Briel M, Schreiber R, Ricken S, Nitschke R, Greger R (1998) No evidence for direct activation of CFTR by 8-cyclopentyl-l,3-dipropylxanthine (CPX). Cell Physiol Biochem 8:185–193

    PubMed  CAS  Google Scholar 

  24. Kunzelmann K, Kathöfer S, Greger R (1995) Na+ and Cl¯ conductances in airway epithelial cells: Increased Na+ conductance in cystic fibrosis. Pflügers Arch 431:1–9

    PubMed  CAS  Google Scholar 

  25. Kunzelmann K, Pavenstädt H, Greger R (1989) Properties and regulation of chloride channels in cystic fibrosis and normal airway epithelial cells. Pflügers Arch 415:172–182

    PubMed  CAS  Google Scholar 

  26. Kunzelmann K, Schreiber R (1999) CFTR, a regulator of channels. J Membr Biol 168:1–8

    PubMed  CAS  Google Scholar 

  27. Kunzelmann K, Tilmann M, Hansen CP, Greger R (1991) Inhibition of epithelial chloride channels by cytosol. Pflügers Arch 418:479–490

    PubMed  CAS  Google Scholar 

  28. Kuver R, Ramesh N, Lau S, Savard C, Lee SP, Osborne WR (1994) Constitutive mucin secretion linked to CFTR expression. Biochem Biophys Res Commun 203:1457–1462

    PubMed  CAS  Google Scholar 

  29. Lee MG, Wigley WC, Zeng W, Noel LE, Marino CR, Thomas PJ, Muallem S (1999) Regulation of Cl-/HCO3-exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells [In Process Citation]. J Biol Chem 274:3414–3421

    PubMed  CAS  Google Scholar 

  30. Li C, Ramjeesingh M, Reyes E, Jensen TJ, Chang XB, Rommens JA, Bear CE (1993) The cystic fibrosis mutation (deltaF508) does not influence the chloride channel activity of CFTR. Nat Genet 3 311–316

    PubMed  CAS  Google Scholar 

  31. Li M, McCann JD, Liedtke CM, Nairn AC, Greengard P, Welsh MJ (1988) Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331:358–360

    PubMed  CAS  Google Scholar 

  32. Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K (1998) The amiloride inhibitable Na+ conductance is reduced by CFTR in normal but not in CF airways. J Clin Invest 102:15–21

    PubMed  CAS  Google Scholar 

  33. Mall M, Bleich M, Kühr J, Brandis M, Greger R, Kunzelmann K (1998) CFTR — mediated inhibition of amiloride sensitive sodium conductance by CFTR in human colon is defective in cystic fibrosis. Am J Physiol 277:G709–G716

    Google Scholar 

  34. Mall M, Hipper A, Greger R, Kunzelmann K (1996) Wilde type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes. FEBS Lett 381: 47–52

    PubMed  CAS  Google Scholar 

  35. Mall M, Kunzelmann K, Hipper A, Busch AE, Greger R (1996) cAMP stimulation of CFTR expressing xenopus oocytes activates a chromanol inhibitable K+ conductance. Pflügers Arch 432:516–522

    PubMed  CAS  Google Scholar 

  36. Mall M, Wissner A, Kühr J, Brandis M, Greger R, Kunzelmann K (1999) Effect of genistein on native epithelial tissues from normal individuals and CF patients and on CFTR expressed in Xenopus oocytes. Am J Respir Cell Mol Biol (submitted)

    Google Scholar 

  37. Mall M, Wissner A, Seydewitz HH, Kühr J, Brandis M, Greger R, Kunzelmann K (1999) Detection of defective cholinergic Cl¯ secretion in rectal biopsies from cystic fibrosis patients. Am J Physiol (submitted)

    Google Scholar 

  38. McNicholas CM, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME (1996) Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc Natl Acad Sci USA 93:8083–8088

    PubMed  CAS  Google Scholar 

  39. Mergey M, Lemnaouar M, Veissiere D, Perricaudet M, Gruenert DC, Picard J, Capeau J, Brahimi-Horn MC, Paul A (1995) CFTR gene transfer corrects defective glycoconjugate secretion in human CF epithelial tracheal cells. Am J Physiol 269:L855–L864

    PubMed  CAS  Google Scholar 

  40. Pilewski JM, Frizzell RA (1999) Role of CFTR in airway disease. Physiol Rev 79: S215–S255

    PubMed  CAS  Google Scholar 

  41. Quinton PM (1986) Missing Cl conductance in cystic fibrosis. Am J Physiol 251: C649–C652

    PubMed  CAS  Google Scholar 

  42. Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271:1876–1878

    PubMed  CAS  Google Scholar 

  43. Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55:609–630

    PubMed  CAS  Google Scholar 

  44. Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Plavsic SLN, Chou JL, Drumm ML, Iannuzzi CM, Collins FS, Tsui LC (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1072

    PubMed  CAS  Google Scholar 

  45. Rommens JM, Iannuzzi BSK, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui LC, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    PubMed  CAS  Google Scholar 

  46. Schoumacher RA, Shoemaker RL, Halm DR, Tallant EA, Wallace RW, Frizzell RA (1987) Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature 330:752–754

    PubMed  CAS  Google Scholar 

  47. Schreiber R, Hopf A, Mall M, Greger R, Kunzelmann K (1999) The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel. Proc Natl Acad Sci USA 96:5310–5315

    PubMed  CAS  Google Scholar 

  48. Schreiber R, Nitschke R, Greger R, Kunzelmann K (1998) CFTR activates AQP3 in airway epithelial cells. J Biol Chem 274:11811–11816

    Google Scholar 

  49. Schultz BD, Singh AK, Devor DC, Bridges RJ (1999) Pharmacology of CFTR chloride channel activity. Physiol Rev 79:S109–S144

    PubMed  CAS  Google Scholar 

  50. Schulz IJ, Frömter E (1968) Mikropunktionsuntersuchungen an Schweißdrüsen von Mukoviszidosepatienten und gesunden Versuchspersonen. In: Windorfer H, Stephan U (Hrsg) Mukoviszidose. Georg Thieme Verlag, Stuttgart, S 12–21

    Google Scholar 

  51. Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol Rev 79:S145–S166

    PubMed  CAS  Google Scholar 

  52. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autoerine mechanism involving ATP. Cell 81:1063–1073

    PubMed  CAS  Google Scholar 

  53. Sheppard DN, Welsh, MJ (1999) Structure and function of the CFTR chloride channel. Physiol Rev 79: S23–S45

    PubMed  CAS  Google Scholar 

  54. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801

    PubMed  CAS  Google Scholar 

  55. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-depen-dent regulator of sodium channels. Science 269:847–850

    PubMed  CAS  Google Scholar 

  56. Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW (1993) Multi-ion pore behaviour in the CFTR chloridec. Nature 366: 79–82

    PubMed  CAS  Google Scholar 

  57. Tsui LC (1997) Genotype and phenotype in cystic fibrosis. HospPract 15:115–142

    Google Scholar 

  58. Zerhusen B, Zhao J, Xie J, Davis PB, Ma J (1999) A single conductance pore for chloride ions formed by two cystic fibrosis transmembrane conductance regulator molecules. J Biol Chem 274:7627–7630

    PubMed  CAS  Google Scholar 

Liteatur zu 2.5

  1. Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpin iontophoresis. Pediatrics 23:545–547

    PubMed  CAS  Google Scholar 

  2. Quinton P (1983) Chloride impermeability in cystic fibrosis. Nature 301:421–422

    PubMed  CAS  Google Scholar 

  3. Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z, Zelenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins F, Tsui LC (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1072

    PubMed  CAS  Google Scholar 

  4. Munger BL, Brusilow SW, Cooke RE (1961) An electron microscopic study of ecerine sweat glands in patients with cystic fibrosis. J Pediatr 59:497–511

    PubMed  CAS  Google Scholar 

  5. Denning GM, Ostedgaard LS, Cheng SH et al. (1992) Lokalisation of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J Clin Invest 89: 339–349

    PubMed  CAS  Google Scholar 

  6. Crawford I, Maloney PC, Zeitlin OL et al. (1991) Immunocytochemical localization of the cystic fibrosis gene produet CFTR. Proc Natl Acad Sci USA 88:9262–9266

    PubMed  CAS  Google Scholar 

  7. Biwersi J, Verkman AS (1994) Functions of CFTR other than as plasma membrane chloride channel. In: Dodge JA, Brock DJH, Widicombe JA (eds) Cystic fibrosis — current topics, vol 2. Wiley, London, pp 155–171

    Google Scholar 

  8. Karner N, Augustinas O, Jensen TJ et al. (1992) Mislocalization of D508 CFTR in cystic fibrosis sweat glands. Nat Genet 1:321–327

    Google Scholar 

  9. Quinton PM, Reddy MM (1989) Cl-conductance and acid secertion in the human sweat duct. Ann NY Acad Sci 574: 438–446

    PubMed  CAS  Google Scholar 

  10. Strong TV, Smith LS, Turpin SV et al. (1991) Cystic fibrosis gene mutation in two sisters with mild disease and normal sweat electrolyte levels. N Engl J Med 325:1630–1634

    PubMed  CAS  Google Scholar 

  11. Highsmith WE, Burch LA, Zhoue Z et al. (1994) Cystic fibrosis gene mutation in patients with normal sweat chloride concentrations. N Engl J Med 329:974–980

    Google Scholar 

  12. Wilschansky M, Zielensky J, Markiewicz D et al. (1995) Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr 127:705–710

    Google Scholar 

  13. Thaysen JH, Schwartz IL (1956) Excretion of sodium and potassium in human sweat. J Clin Invest 35:114–115

    PubMed  Google Scholar 

  14. Quinton PM (1982) Abnormalities in electrolyte secretion in cystic fibrosis. In: Quinton PM, Martinez RM, Hopfer U (eds) Fluid and electrolyte abnormalities in cystic fibrosis. San Francisco Press, pp 53–76

    Google Scholar 

  15. Mancini AJ, Lane AT (1995) Sweating in the neonate. In: Scriver CR et al. (eds) The metabolic and molecular bases of inherited diseases, vol 1. McGraw-Hill, pp 767–770

    Google Scholar 

  16. Schöni MH, Kraemer R, Bähler P, Rossi E (1984) Early diagnosis of cystic fibrosis by means of sweat microosmometry. J Pediatr 104:691–1984

    PubMed  Google Scholar 

  17. Behrendt H, Green M (1972) Nature of the sweating deficit of prematurely born neonates. N Engl J Med 286:1376

    PubMed  CAS  Google Scholar 

  18. National Committee for Clinical Laboratory Standards. Sweat testing: sample collection and quantitative analysis — approved guideline (document C34-A) Wayne (PA): The Committee 1994 (Address: 940 W. Valley Rd., Suite 1400, Wayne, PA 19087)

    Google Scholar 

  19. Augarten A, Hacham S, Kerem E, Kerem BS et al. (1995) The significance of sweat Cl/Na ratio in patients with borderline sweat test. Pediatr Pulmonol 20:369–371

    PubMed  CAS  Google Scholar 

  20. Webster HL, Barlow WK (1981) New approach to cystic fibrosis diagnosis by use of an improved sweat induction/collection system and osmometry. Clin Chem 27: 385–387

    PubMed  CAS  Google Scholar 

  21. Denning CF Huang NN, Cuasay LR et al. (1980) Coope-rative study comparing three methods of performing sweat tests to diagnose cystic fibrosis. Pediatrics 66: 752–757

    PubMed  Google Scholar 

  22. LeGrys VA (1996) Sweat testing for the diagnosis of cystic fibrosis: Practical considerations. J Pediatr 129:892–897

    PubMed  CAS  Google Scholar 

Liteatur zu 2.6

  1. Beck S, Penque D, Garcia S, Gomes A, Farinha C, Mata L, Gulbenkian S, Gil-Ferreira K, Duarte A, Pacheco P, Barreto C, Lopes B, Cavaco J, Lavinha J, Amaral MD (1999) Cystic fibrosis patients with the 3272–26 A-G mutation have mild disease, leaky alternative mRNA splicing, and CFTR protein at the cell membrane. Hum Mutat 14:133–144

    PubMed  CAS  Google Scholar 

  2. Bienvenu T, Hubert D, Fonknechten N, Dusser D, Kaplan JC, Beldjord C (1994) Unexpected inactivation of acceptor consensus splice sequence by a —3C to T transition in intron 2 of the CFTR gene. Hum Genet 94:65–68

    PubMed  CAS  Google Scholar 

  3. Champigny G, Imler JL, Puchelle E, Dalemans W, Gribkoff V, Hinnrasky J, Dott K, Barbry P, Pavirani A, Lazdunski M (1995) A change in gating mode leading to increased intrinsic chloride channel activity compensates for defective processing in a cystic fibrosis mutant corresponding to a mild form ofdisease. EMBO J 14:2417–2423

    PubMed  CAS  Google Scholar 

  4. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    PubMed  CAS  Google Scholar 

  5. Chiba-Falek O, Parad RB, Kerem E, Kerem B (1999) Variable levels of normal RNA in different fetal organs carrying a cystic fibrosis transmembrane conductance regulator splicing mutation. Am J Respir Crit Care Med 159: 1998–2002

    PubMed  CAS  Google Scholar 

  6. Chillon M, Dörk T, Casals T, Gimenez J, Fonknechten N, Will K, Ramos D, Nunes V, Estivill X (1995) A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6 kb A-G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype. Am J Hum Genet 56:623–629

    PubMed  CAS  Google Scholar 

  7. Cotten JF, Ostedgaard LS, Carson MR, Welsh MJ (1996) Effect of cystic fibrosis — associated mutations in the fourth intracellular loop of cystic fibrosis transmembrane conductance regulator. J Biol Chem 271:21279–21284

    PubMed  CAS  Google Scholar 

  8. Cuppens H, Lin W, Jaspers M, Costes B, Teng H, Vankeer-berghen A, Jorissen M, Droogmans G, Reynaert I, Goossens M, Nilius B, Cassiman JJ (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The Polymorphie (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J Clin Invest 15:487–496

    Google Scholar 

  9. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the deltaF508 cystic fibrosis mutation. Nature 354: 526–528

    PubMed  CAS  Google Scholar 

  10. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    PubMed  CAS  Google Scholar 

  11. Dörk T, Will K, Demmer A, Tümmler B (1993) A donor splice mutation (405 +1 G-A) in cystic fibrosis associated with exon skipping in epithelial CFTR mRNA. Hum Mol Genet 2:1965–1966

    PubMed  Google Scholar 

  12. Dörk T, Will K, Grade K, Krawczak M, Tümmler B (1994) A 32-bp deletion (2991del32) in the cystic fibrosis gene associated with CFTR mRNA reduetion. Hum Mutat 4:65–70

    PubMed  Google Scholar 

  13. Dray-Charier N, Paul A, Scoazec JY,Veissiere D, Mergey M, Capeau J, Soubrane O, Housset C (1999) Expression of the deltaF508 cystic fibrosis transmembrane conductance regulator protein and related transport properties in the gallbladder epithelium from cystic fibrosis patients. Hepatology 29:1624–1634

    PubMed  CAS  Google Scholar 

  14. Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by deltaF508 and other mutant CFTRs in Xenopus ooeytes. Science 254:1797–1799

    PubMed  CAS  Google Scholar 

  15. Dupuit F, Kälin N, Brezillon S, Hinnrasky J, Tümmler B, Puchelle E (1995) CFTR and differentiation markers expression in non-CF and deltaF508 homozygous CF nasal epithelium. J Clin Invest 96:1601–1611

    PubMed  CAS  Google Scholar 

  16. Fanen P, Labarthe R, Garnier F, Benharouga M, Goossens M, Edelman A (1997) Cystic fibrosis phenotype associated with pancreatic insufficiency does not always reflect the cAMP-dependent chloride conduetive pathway defect. Analysis of C225R-CFTR and R1066C-CFTR. J Biol Chem 272:30563–30566

    PubMed  CAS  Google Scholar 

  17. Fulmer SB, Schwiebert EM, Morales MM, Guggino WB, Cutting GR (1995) Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc Natl Acad Sci USA 92: 6832–6836

    PubMed  CAS  Google Scholar 

  18. Gregory RJ, Rich DP, Cheng SH, Souza DW, Paul S, Mana-valan P, Anderson MP, Welsh MJ, Smith AE (1991) Maturation and funetion of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol Cell Biol 11: 3886–3893

    PubMed  CAS  Google Scholar 

  19. Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs GL (1998) C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without imparing its biogenesis. J Biol Chem 274:21873–21877

    Google Scholar 

  20. Hamosh A, Trapnell BC, Zeitlin PL, Montrose-Rafizadeh C, Rosenstein BJ, Crystal RG, Cutting GR (1991) Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J Clin Invest 88:1880–1885

    PubMed  CAS  Google Scholar 

  21. Hamosh A, Rosenstein BJ, Cutting GR (1992) CFTR nonsense mutations G542X and W1282X associated with severe reduetion of CFTR mRNA in nasal epithelial cells. Hum Mol Genet 1:572–574

    Google Scholar 

  22. Highsmith WE, Burch LH, Zhou Z, Olsen JC, Boat TE, Spock A, Gorvoy JD, Quittel L, Friedman KJ, Silverman LM (1994) A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med 331:974–980

    PubMed  CAS  Google Scholar 

  23. Highsmith WE Jr, Burch LH, Zhou Z, Olsen JC, Strong TV, Smith T, Friedman KJ, Silverman LM, Boucher RC, Collins FS, Knowles MR (1997) Identification of a splice site mutation (2789 + 5 G-A) associated with small amounts of normal CFTR mRNA and mild cystic fibrosis. Hum Mutat 9:332–338

    PubMed  CAS  Google Scholar 

  24. Hull J, Shackleton S, Harris A (1993) Abnormal mRNA splicing resulting from three different mutations in the CFTR gene. Hum Mol Genet 2:689–692

    PubMed  CAS  Google Scholar 

  25. Hull J, Shackleton S, Harris A (1994) The stop mutation R553X in the CFTR gene results in exon skipping. Genomics 15:352–354

    Google Scholar 

  26. Kälin N, Claaß A, Sommer M, Puchelle E, Tümmler B (1999) DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest 103:1379–1389

    PubMed  Google Scholar 

  27. Kartner N, Augustinas O, Jensen TJ, Naismith AL, Riordan JR (1992) Mislocalization of deltaF508 CFTR in cystic fibrosis sweat gland. Nat Genet 1:321–327

    PubMed  CAS  Google Scholar 

  28. Logan J, Hiestand D, Daram P, Huang Z, Muccio DD, Hartman J, Haley B, Cook WJ, Sorscher EJ (1994) Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest 94:228–236

    PubMed  CAS  Google Scholar 

  29. Lukacs GL, Chang XB, Bear C, Kartner N, Mohamed A, Riordan JR, Grinstein S (1993) The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J Biol Chem 268:21592–21598

    PubMed  CAS  Google Scholar 

  30. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (deltaF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13: 6076–6086

    PubMed  CAS  Google Scholar 

  31. Mickle JE, Macek M Jr, Fulmer-Smentek SB, Egan MM, Schwiebert E, Guggino M, Moss R, Cutting GR (1998) A mutation in the cystic fibrosis transmembrane conductance regulator gene associated with elevated sweat chloride concentrations in the absence of cystic fibrosis. Hum Mol Genet 7:729–735

    PubMed  CAS  Google Scholar 

  32. Ostedgaard LS, Zeiher B, Welsh MJ (1999) Processing of CFTR bearing the P574H mutation differs from wild-type and deltaF508-CFTR. J Cell Sci 112:2091–2098

    PubMed  CAS  Google Scholar 

  33. Romey MC, Guittard C, Chazalette JP, Frossard P, Dawson KP, Patton MA, Casals T, Bazarbachi T, Girodon E, Rault G, Bozon D, Seguret F, Demaille J, Claustres M (1999) Complex allele [–102 T + S549R(T-G)] is associated with milder forms of cystic fibrosis than allele S549R(T-G) alone. Hum Genet 105:145–150

    PubMed  CAS  Google Scholar 

  34. Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Clarke DM, Riordan JR (1996) Disease-associated mutations in the fourth cytoplasmic loop of cystic fibrosis transmembrane conduetance regulator compromise biosynthetic processing and chloride channel activity. J Biol Chem 271: 15139–15145

    PubMed  CAS  Google Scholar 

  35. Seibert FS, Linsdell P, Loo TW, Hanrahan JW, Riordan JR, Clarke DM (1996) Cytoplasmic loop three of cystic fibrosis transmembrane conduetance regulator contributes to regulation of chloride channel activity. J Biol Chem 271: 27493–27499

    PubMed  CAS  Google Scholar 

  36. Seibert FS, Jia Y, Mathews CJ, Hanrahan JW, Riordan JR, Loo TW, Clarke TW, Clarke DM (1997) Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conduetance regulator impede processing or opening of the channel. Biochemistry 36: 11966–11974

    PubMed  CAS  Google Scholar 

  37. Sheppard DN, Ostedgaard LS (1996) Understanding how cystic fibrosis mutations cause a loss of chloride channel funetion. Mol Med Today 2:290–297

    PubMed  CAS  Google Scholar 

  38. Sheppard DN, Rich DP, Ostedgaard LO, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form chloride channels with altered pore properties. Nature 362:160–164

    PubMed  CAS  Google Scholar 

  39. Sheppard DN, Ostedgaard LS, Winter MC, Welsh MJ (1995) Mechanism of dysfunetion of two nucleotide binding domain mutations in cystic fibrosis transmembrane conduetance regulator that are associated with pancreatic sufficiency. EMBO J 14:876–883

    PubMed  CAS  Google Scholar 

  40. Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conduetance regulator to chloride channel function. J Biol Chem 271: 14995–15001

    PubMed  CAS  Google Scholar 

  41. Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC (1993) Functional roles of the nucleotide-binding folds in the activation of the cystic fibrosis transmembrane conduetance regulator. Proc Natl Acad Sci USA 90: 9963–9967

    PubMed  CAS  Google Scholar 

  42. Smit LS, Strong TV, Wilkinson DJ, Macek M Jr, Mansoura MK, Wood DL, Cole JL, Cutting GR, Cohn JA, Dawson DC (1995) Missense mutation (G480 C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. Hum Mol Genet 4:269–273

    PubMed  CAS  Google Scholar 

  43. Teem JL, Berger HA, Ostedgaard LS, Rich DP, Tsui LC, Welsh MJ (1993) Identication of revertants for the cystic fibrosis deltaF508 mutation using STE6-CFTR chimeras in yeast. Cell 73:335–346

    PubMed  CAS  Google Scholar 

  44. Vankeerberghen A, Wei L, Jaspers M, Cassiman JJ, Nilius B, Cuppens H (1998) Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conduetance regulator. Hum Mol Genet 7:1761–1769

    PubMed  CAS  Google Scholar 

  45. Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman JJ, Nilius B, Cuppens H (1998) Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett 437:1–4

    PubMed  CAS  Google Scholar 

  46. Ward CL, Kopito RR (1994) Intracellular turnover of cystic fibrosis transmembrane conduetance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269:25710–25718

    PubMed  CAS  Google Scholar 

  47. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunetion in cystic fibrosis. Cell 73:1251–1254

    PubMed  CAS  Google Scholar 

  48. Will K, Dörk T, Stuhrmann M, Meitinger T, Bertele-Harms R, Tümmler B, Schmidtke J (1994) A novel exon in the cystic fibrosis transmembrane conduetance regulator gene activated by the nonsense mutation E92X in airway epithelial cells of patients with cystic fibrosis. J Clin Invest 93: 1852–1859

    PubMed  CAS  Google Scholar 

  49. Will K, Dörk T, Stuhrmann, M, von der Hardt H, Ellemunter H, Tümmler B, Schmidtke J (1995) Transcript analysis of CFTR nonsense mutations in lymphocytes and nasal epithelial cells from cystic fibrosis patients. Hum Mutat 5: 210–220

    PubMed  CAS  Google Scholar 

  50. Xiong X, Bragin A, Widdicombe JH, Cohn J, Skach WR (1997) Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conduetance regulator. J Clin Invest 100: 1079–1088

    PubMed  CAS  Google Scholar 

  51. Zielenski J, Tsui L-C (1995) Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 29:777–807

    PubMed  CAS  Google Scholar 

  52. Zielenski J, Bozon D, Markiewicz D, Aubin G, Simard F, Rommens JM, Tsui LC (1993) Analysis of CFTR transcripts in nasal epithelial cells and lymphoblasts of a cystic fibrosis patient with 621 + 1 G-T and 711 + 1 G-T mutations. Hum Mol Genet 2:683–687

    PubMed  CAS  Google Scholar 

  53. Zielenski J, Markiewicz D, Lin SP, Huang FY, Yang-Feng TL, Tsui LC (1995) Skipping of exon 12 as a consequence of a point mutation (1898 + 5 G-T) in the cystic fibrosis transmembrane conduetance regulator gene found in a consanguineous Chinese family. Clin Genet 47:125–132

    PubMed  CAS  Google Scholar 

Liteatur zu 2.7

  1. Abeliovich D, Lavon IP, Lerer I, Cohen T, Springer C, Avital A, Cutting GR (1992) Screening for 5 mutations defects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkanazy population. Am J Hum Genet 51:951–956

    PubMed  CAS  Google Scholar 

  2. Aebi C, Bracher R, Liechti Gallati S, Tschappeler H, Rudeberg A, Kraemer R (1995) The age at onset of chronic Pseudomonas aeruginosa colonization in cystic fibrosis — prognostic significance. Eur J Pediatr 154:S69–S73

    PubMed  CAS  Google Scholar 

  3. Andersen DH (1938) Cystic fibrosis of the pancreas and its relation to coeliac disease: a clinical and pathological study. Am J Dis Childh 56:344–399

    Google Scholar 

  4. Antinolo G, Borrego S, Gili M, Dapena J, Alfageme I, Reina F (1997) Genotype-phenotype relationship in 12 patients carrying cystic fibrosis mutation R334W. J Med Genet 34: 89–91

    PubMed  CAS  Google Scholar 

  5. Boat TF, Cantin AM, Cutting GR, Dorking HL, Durie P, Fitz-Simmons S, Knowles M, Rosenstein BJ, Saiman L, Tullis E (1998) The diagnosis of cystic fibrosis. Cystic Fibrosis Foundation, Bethesda

    Google Scholar 

  6. Boucher RC (1999) Status of gene therapy for cystic fibrosis lung disease. J Clin Invest 103:441–445

    PubMed  CAS  Google Scholar 

  7. Casals T, Ramos MD, Gimenez J, Larriba S, Nunes V, Estivill X (1997) High heterogeneity for cystic fibrosis in Spanish families: 75 mutations aecount for 90% of chromosomes. Hum Genet 101:365–370

    PubMed  CAS  Google Scholar 

  8. Chiba-Falek O, Kerem E, Shoshani T, Aviram M, Augarten A, Bentur L, Tal A, Tullis E, Rahat A, Kerem B (1998) The molecular basis of disease variability among cystic fibrosis patients carrying the 3849+10kbC->T mutation. Genomics 53:276–283

    PubMed  CAS  Google Scholar 

  9. Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779

    PubMed  CAS  Google Scholar 

  10. Cuppens H, Lin W, Jaspers M, Costes B, Teng H, Vankeer-berghen A, Jorissen M, Droogmans G, Reynaert I, Goossens M, Nilius B, Cassiman JJ (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. J Clin Invest 101:487–496

    PubMed  CAS  Google Scholar 

  11. Cutting GR (1994) Genotype effect:its effect on cellular function and phenotypic expression. Semin Respir Crit Care Med 15:356–363

    Google Scholar 

  12. Cutting GR, Curristin SM, Nash E, Rosenstein BJ, Lerer J, Abeliovich D, Hill A, Graham C (1992) Analysis of four diverse population groups indicates that a subset of cystic fibrosis mutations occur in common among Caucasians. Am J Hum Genet 50:1185–1194

    PubMed  CAS  Google Scholar 

  13. Cystic Fibrosis Genetic Analysis Consortium (1990) Worldwide survey of the delta F508 mutation — report from the cystic fibrosis genetic analysis consortium. Am J Hum Genet 47:354–359

    Google Scholar 

  14. Davis PB (1991) Molecular and cell biology of cystic fibrosis. J Appl Physiol 70:2331–2333

    PubMed  CAS  Google Scholar 

  15. De Braekeleer M, Allard C, Leblanc JP, Simard F, Aubin G (1997) Genotype-phenotype correlation in cystic fibrosis patients compound heterozygous for the A455 E mutation. Hum Genet 101:208–211

    Google Scholar 

  16. Dean M, Santis G (1994) Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations. Hum Genet 93:364–368

    PubMed  CAS  Google Scholar 

  17. di Sant’Agnese PA, Darling RC, Perera GA, Shea E (1953) Sweat electrolyte disturbances associated with childhood pancreatic disease. Am J Med 15:777–784

    Google Scholar 

  18. Fanconi G, Uehlinger E, Knauer C (1936) Das Coeliakie-Syndrom bei angeborener zystischer Pankreasfibrose und Bronchiektasien. Wien Med Wochenschr 86:753–756

    Google Scholar 

  19. Gan KH, Veeze HJ, van den Ouweland AM, Halley DJ, Scheffer H, van der Hout A, Overbeek SE, de Jongste JC, Bakker W, Heijerman HG (1995) A cystic fibrosis mutation associated with mild lung disease. N Engl J Med 333: 95–99

    PubMed  CAS  Google Scholar 

  20. Gibson LE, Cooke RE (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23:545–549

    PubMed  CAS  Google Scholar 

  21. Hamosh A, Cory M (1993) Correlation between genotype and phenotype in patients with cystic fibrosis. N Engl J Med 329:1308–1313

    Google Scholar 

  22. Jiang Q, Engelhardt JF (1998) Cellular heterogeneity of CFTR expression and function in the lung: implications for gene therapy of cystic fibrosis. Eur J Hum Genet 6: 12–31

    PubMed  CAS  Google Scholar 

  23. Kerem BS, Rommans JM, Buchanam JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsu LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    PubMed  CAS  Google Scholar 

  24. Kerem E, Corey M, Kerem BS, Rommens J, Markiewicz D, Levison H, Tsui LC, Durie P (1990) The relation between genotype and phenotype in cystic fibrosis — analysis of the most common mutation (delta F508). N Engl J Med 323: 1517–1522

    PubMed  CAS  Google Scholar 

  25. Knowles M, Gatzy J, Boucher R (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 305:1489–1495

    PubMed  CAS  Google Scholar 

  26. Kraemer R, Casaulta Aebischer C, Liechti-Gallati S, Schöni MH (1998) Pulmonary hyperinflation: a beneficial or harm-full factor for lung function in infants with cystic fibrosis (CF)? Cystic Fibrosis Foundation, Bethesda

    Google Scholar 

  27. Kraemer R, Rudeberg A, Hadorn B, Rossi E (1978) Relative underweight in cystic fibrosis and its prognostic value. Acta Paediatr Scand 67:33–37

    PubMed  CAS  Google Scholar 

  28. Kraemer R, Schoni MH (1990) Ventilatory inequalities, pulmonary function and blood oxygenation in advanced states of cystic fibrosis. Respiration 57:318–324

    PubMed  CAS  Google Scholar 

  29. Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens J, Tsui L, Durie P (1992) Genetic determination of exocrine pancreatic funtion in cystic fibrosis. Am J Hum Genet 50: 1178–1184

    PubMed  CAS  Google Scholar 

  30. Liechti-Gallati S, Aebi C, Kraemer R (1999) Specific genotypes determine the age of chronic pseudomonas aeruginosa colonization in cystic fibrosis patients. Am J Respir Crit Care Med (abstract)

    Google Scholar 

  31. Liechti-Gallati S, Bonsall I, Malik N, Schneider V, Kraemer LG, Ruedeberg A, Moser H, Kraemer R (1992) Genotype/ phenotype association in cystic fibrosis: analyses of the delta F508, R553X, and 3905insT mutations. Pediatr Res 32: 175–178

    PubMed  CAS  Google Scholar 

  32. Liechti-Gallati S, Schneider V, Neeser D, Kraemer R (1999) Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation Screening in cystic fibrosis and any other human genetic disease. Eur J Hum Genet 7:590–598

    PubMed  CAS  Google Scholar 

  33. Mohon RT, Wagener JS, Abman SH, Seltzer WK, Accurso FJ (1993) Relationship of genotype to early pulmonary function in infants with cystic fibrosis identified through neonatal Screening. J Pediatr 122:550–555

    PubMed  CAS  Google Scholar 

  34. Moullier P, Jéhanne M, Audrézet MP, Mercier B, Verlingue C, Quéré I, Guillermit H, Raguénès O, Storni V, Rault G, Férec C (1994) Association of 1078delT cystic fibrosis mutation with severe disease. J Med Genet 31:159–161

    PubMed  CAS  Google Scholar 

  35. Rosenstein BJ (1994) Genotype-phenotype correlations in cystic fibrosis. Lancet 343:746–747

    PubMed  CAS  Google Scholar 

  36. Rosenstein BJ, Cutting GR (1998) The diagnosis of cystic fibrosis: A consensus statement. J Pediatr 132:589–595

    PubMed  CAS  Google Scholar 

  37. Schultz BD, Singh AK, Devor DC, Bridges RJ (1999) Pharmacology of CFTR chloride channel activity. Physiol Rev 79:S109–S144

    PubMed  CAS  Google Scholar 

  38. Schöni MH, Kraemer R, Bähler P, Rossi E (1984) Early diagnosis of cystic fibrosis by means of sweat microosmometry. J Pediatr 104:691–694

    PubMed  Google Scholar 

  39. Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl-channels with altered pore properties. Nature 362:160–164

    PubMed  CAS  Google Scholar 

  40. Shoshani T, Kerem E, Szeinberg A, Augarten A, Yahav Y, Cohen D, Rivlin J, Tal A, Kerem B (1994) Similar levels of mRNA from the W1282X and the AF508 cystic fibrosis alleles, in nasal epithelial cells. J Clin Invest 93:1502–1507

    PubMed  CAS  Google Scholar 

  41. Tepper RS, Eigen H, Stevens J, Angelicchio C, Kisling J, Ambrosius W, Heilman D (1997) Lower respiratory illness in infants and young children with cystic fibrosis: evaluation of treatment with intravenous hydrocortisone. Pediatr Pulmonol 24:48–51

    PubMed  CAS  Google Scholar 

  42. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gallati, S., Kraemer, R., Kunzelmann, K., Randak, C., Schöni, M.H., Tümmler, B. (2001). Zellbiologie. In: Reinhardt, D., Götz, M., Kraemer, R., Schöni, M.H. (eds) Cystische Fibrose. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56796-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56796-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63172-6

  • Online ISBN: 978-3-642-56796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics