Advertisement

Osteoporose und metabolische Knochenerkrankungen

  • R. Ziegler

Zusammenfassung

Das fertige Knochengewebe besteht aus der Knochengrundsubstanz, die vor allem aus Kollagen Typ I besteht, zusätzlich aus unterschiedlichen Eiweißen wie Sialoprotein, Osteopontin, Osteonektin o.a. Eingelagert sind auch Wachstumsfaktoren und Zytokine wie IGF-1, IGF-2 und TGF-β. Stabilisiert wird die biegsame, aber zugkräftige Grundsubstanz durch die Einlagerung des Hydroxylapatits. Griffig ist der technische Vergleich mit Eisenbeton: Das Kollagen entspricht der Eisenarmierung, das Hydroxylapatit dem Zement. Je nach mechanischer Aufgabe werden für die einzelnen Knochen kompakte Strukturen verwendet (z. B. Röhrenknochen), oder es liegt der verzweigte spongiöse, trabekuläre Knochen als Netzwerk von Streben, Stäben und Platten vor (z. B. Wirbelkörper).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu Abschn. 11.1

  1. Cuneo R.C., Judd S., Wallace J.D. et al. (1998) The Australian multicenter trial of growth hormone (GH) treatment in GHdeficient adults. J Clin Endocrin Metab 83: 107–118CrossRefGoogle Scholar
  2. Drinkwater B., Nilson K., Chesnut III C. et al.(1984) Bone mineral content of amenorrheic and eumenorrheic athletes. New Engl J Med 311: 277–281PubMedCrossRefGoogle Scholar
  3. Eriksen E.F., Axelrod D.W., Meisen F. (1994) Bone Histomorphometry. New York: Raven Press, 13–20Google Scholar
  4. Frost H. (1991) A new direction for osteoporosis research: A review and proposal. Bone 12: 429–437PubMedCrossRefGoogle Scholar
  5. Rao D.S. (1995) Bone and mineral metabolism. Bockus Gastroenterology. 5th edn, Saunders, Philadelphia, pp 464–3471Google Scholar
  6. Uzzan B., Campos I., Cucherat M., Nony P., Boissei J.P., Perret G.Y. (1996) Effects on bone mass oflong term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab 81, 4278–4289PubMedCrossRefGoogle Scholar
  7. Ziegler R. (1995) Der Knochen und seine Erkrankungen, Teil I-VI. Dtsch Med Wochenschr 120: 531–532, 571–572, 1091–1092, 1251–1252, 1367–1368, 1445–1446PubMedGoogle Scholar
  8. Ziegler R., Scheidt-Nave C., Scharla S. (1995) Pathophysiology of osteoporosis: unresolved problems and new insights. J Nutr 125: 2033S-2037SGoogle Scholar

Literatur zu Abschn. 11.2

  1. Adachi J.D. (1997) Corticosteroid-induced osteoporosis. Am J Med Sci 313: 41–49PubMedCrossRefGoogle Scholar
  2. Black D.M., Cummings S.R., Karpf D.B. et al. (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348: 1535–1541PubMedCrossRefGoogle Scholar
  3. Chapuy M.C., Arlot M.E., Delmas P.D., Meunier P.J. (1994) Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 308: 1081–1082PubMedCrossRefGoogle Scholar
  4. Civitelli R., Connelli S., Zacchei F. et al. (1988) Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment. J Clin Invest 82: 1268–1274PubMedCrossRefGoogle Scholar
  5. Cummings S.R., Black D.M., Nevitt M.C., et al. (1993) Bone density at various sites for prediction of hip fractures. Lancet 341: 72–75PubMedCrossRefGoogle Scholar
  6. Dawson-Hughes B., Harris S.S., Krall E.A., Dallal G.E. (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337: 670–676PubMedCrossRefGoogle Scholar
  7. Erdtsieck R.I., Pols H.A.P., Kuijk C.V. et al. (1994) Course of bone mass during and after hormonal replacement therapy with and without addition of nandrolone decanoate. J Bone Miner Res 9: 277–283PubMedCrossRefGoogle Scholar
  8. Ettinger B., Genant H.K., Cann C.E. (1985) Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med 102: 319–324PubMedCrossRefGoogle Scholar
  9. Farley J.R., Tarbaux N.M., Hall S.L. et al.(1988) Evidence that fluoride-stimulated 3[H] thymidine incorporation in embryonic chick calvarial cell cultures is dependent on the presence of a bone cell mitogen, sensitive to changes in the phosphate concentration, and modulated by systemic skeletal effectors. Metabolism 37: 988–995PubMedCrossRefGoogle Scholar
  10. Farrerons I., Rodriguez de la Serna A., Gua[ntilde]abens N. et al. (1997) Sodium fluoride treatment is a major protector against vertebral and nonvertebral fractures when compared with other common treatments of osteoporosis: a longitudinal, observational study. Calcif Tissue Int 60: 250–254PubMedCrossRefGoogle Scholar
  11. Felson D.T., Sloutskis D., Anderson J.J. et a1. (1991) Thiazide diuretics and the risk of hip fracture. Results from the Framingham Study. JAMA 265: 370–373PubMedCrossRefGoogle Scholar
  12. Flicker L., Hopper J.L., Larkins R.G., Lichtenstein M., Buirski G., Wark J.D. (1997) Nandrolone decanoate and intranasal calcitonin as therapy in established osteoporosis. Osteoporosis Int 7: 29–35CrossRefGoogle Scholar
  13. Gallacher S.I., Anderson K., Speekenbrink T., Bessent R., Boyle I.T. (1995) A comparison ofthe effects of etidronate, pamidronate, clodronate and calcium on bone density in patients with corticosteroid-dependent lung disease. Calcif Tissue Int 56: 447Google Scholar
  14. Lau E.C.M., Cooper C., Wickham C., Donnan S., Barker D.J.P. (1990) Hip fracture in Hong Kong and Britain. Int J Epidemiol 19: 1119–1121PubMedCrossRefGoogle Scholar
  15. Leidig G., Minne H.W., Sauer P., Wüster C., Wüster I., Lojen M., Raue F., Ziegler R. (1990) A study of complaints and their relation for vertebral destruction in patients with osteoporosis. Bone and Mineral 8: 217–229PubMedCrossRefGoogle Scholar
  16. Lutkin E.G., Wahner H.W., O’Fallon W.M. et al. (1992) Treatment of postmenopausal osteoporosis with trans dermal estrogen. Ann Intern Med 117: 1–9CrossRefGoogle Scholar
  17. Melton L.J. III, Chrischilles E.A., Cooper C., Lane AW., Riggs B.L. (1992) How many women have osteoporosis? J Bone Miner Res 7: 1005–1010PubMedCrossRefGoogle Scholar
  18. Obrant K.J., Bngner U., Johnell O., Nilsson B.E., Sernbo I. (1989) Increasing age-adjusted risk of fragility fractures: a sign of increasing osteoporosis in successive generations? Calcif Tissue Int 44: 157–167PubMedCrossRefGoogle Scholar
  19. Overgaard K., Hansen M.A., Birk Jensen S., Christiansen C. (1992) Effect of salcatonin given intranasallyon bone mass and fracture rate in established osteoporosis: a dose-response study. BMJ 305: 556–561Google Scholar
  20. Quigley M.E.T., Martin P.L., Burnier A.M., Brooks P. (1987) Estrogen therapy arrests bone loss in elderly women. Am J Obstet Gynecol 156: 1516–1523PubMedGoogle Scholar
  21. Ravn P., Clemmesen B., Riis B.J., Christiansen C. (1996) The effect on bone mass and bone markers of different doses of ibandronate: A new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: A 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone 19: 527–533PubMedCrossRefGoogle Scholar
  22. Riggs B.L., Melton L.J. III (1986) Involutional osteoporosis. N Engl J Med 314: 1676–1686PubMedCrossRefGoogle Scholar
  23. Riggs B.L., O’Fallon W.M., Lane A., Hodgson S.F. et al. (1994) Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended observations and additional analysis. J Bone Miner Res 9: 265–275PubMedCrossRefGoogle Scholar
  24. Scheidt-Nave C., Felsenberg D., Kragl G., Brucker T., LeidigBruckner G., Wüster C., Ziegler R. (1998) Vertebrale Deformität als Index der osteoporotischen Wirbelfraktur-eine externe Konstruktvalidierung anhand von Knochendichtemessdaten. Medizinische Klinik 93(Suppl. II):46–55PubMedCrossRefGoogle Scholar
  25. Seilers T.A., Mink P.I., Cerhan J.R. et al. (1997) The role of hormone replacememnt therapy in the risk for breast cancer and total mortality in women with a family history of breast cancer. Ann Intern Med 127: 973–980CrossRefGoogle Scholar
  26. Storm T., Kollerup G., Thamsborg G., Genant H.K., Sorensen O.H. (1996) Five years of clinical experience with intermittent cyclical etidronate for postmenopausal osteoporosis. J Rheumatol 23: 1560–1564PubMedGoogle Scholar
  27. Thiebaud D., Burckhardt P., Melchior J. et al. (1994) Two years’s effectiveness of intravenous pamidronate (APD) versus oral fluoride for osteoporosis occurring in the postmenopause. Osteoporosis Int 4: 76–83CrossRefGoogle Scholar
  28. Tilyard M.W., Spears G.F.S., Thomson J., Dovey S. (1991) Treatment of postmenopausal osteoporosis with calcitriol or calcium. J Engl J Med 326: 357–362CrossRefGoogle Scholar
  29. Ziegler R. (1995) Der Knochen und seine Erkrankungen, Teil I-VI. Dtschmed Wschr 120: 531–532, 571–572, 1091–1092, 1251–1252, 1367–1368, 1445–1446Google Scholar

Literatur zu Abschn. 11.3

  1. Glorieux F.H. (1996) Hypophosphatemic vitamin D-resistant rickets. In: Favus M.J. (ed) Primer on the metabolic bone diseases and dis orders of mineral metabolism. 3rd edn, Lippincott & Raven, Philadelphia, pp 316–319Google Scholar
  2. Kruse K. (1990) Metabolische Osteopathien im Kindesalter. Internist 31: 745–755PubMedGoogle Scholar
  3. Offermann G., Manhold C. (1978) Osteomalazie bei türkischen Gastarbeitern in Deutschland. Inn Med 5: 103–108Google Scholar
  4. Sparagana M. (1987) Tumor-induced osteomalacia: long-term follow-up of two patients cured by removal of their tumors. J Surg Oncol 36: 198–205PubMedCrossRefGoogle Scholar

Literatur zu Abschn. 11.4

  1. Cartwright E.I., Gordon M.T., Freemont A.I., Anderson D.C., Sharpe P.T. (1993) Paramyxovirus and Paget’s disease. J Med Virol 40: 133–141PubMedCrossRefGoogle Scholar
  2. Grauer A., Klar B., Scharia S., Ziegler R. (1994) Long-term efficacy of intravenous pamidronate in Paget’s disease of bone. Seminars in Arthritis and Rheumatism 23: 283–284 Paget J (1877) On a form of chronic inflammation ofbone (osteitis deformans). Med Chir Trans 60: 37PubMedCrossRefGoogle Scholar
  3. Rebel A., Bregeon C., Basle M., Kalkani K., Patezour A., Filmon R. (1975) Osteoclastic inclusions in Paget’s disease of bone. Rev Rhum Mal Osteoartic 42: 637–641PubMedGoogle Scholar
  4. Roux C., Gennari C., Farrerons J. et al. (1995) Comparative prospective double-blind, multicenter study of the efficacy of tiludronate and etidronate in the treatment of Paget’s disease of bone. Arthritis Rheum 38: 851–858PubMedCrossRefGoogle Scholar
  5. Schmorl G. (1932) Über Ostitis deformans Paget. Virch Arch Path Anat 283: 694Google Scholar
  6. Ziegler R. (1990) M. Paget des Skeletts. Internist 31: 763–768PubMedGoogle Scholar
  7. Ziegler R., Holz G., Rotzier B., Minne H. (1985) Paget’s disease of bone in West Germany: Prevalence and distribution. Clin Orthop 194: 199–204PubMedGoogle Scholar

Literatur zu Abschn. 11.5

  1. Albers-Schönberg H. (1904) Röntgenbilder einer seltenen Knochenerkrankung. Münch Med Wochenschr 51: 365Google Scholar
  2. Coccia P.F., Krivit W., Cervenka J. et al. (1980) Successful bonemarrow transplantation for infantile malignant osteopetrosis. N Engl J Med 302: 701–708PubMedCrossRefGoogle Scholar
  3. Helfrich M.H., Aronson D.C., Everts V., Mieremet R.H.P., Gerritsen E.J.A., Eckhardt P.G., Groot C.G., Scherft J.P. (1991) Morphologic features of bone in human osteopetrosis. Bone 12: 411–419PubMedCrossRefGoogle Scholar
  4. Kahler S.G., Bums J.A., Aylsworth A.S. (1984) A mild autosomal recessive form of osteopetrosis. Am J Med Genet 17: 451–464PubMedCrossRefGoogle Scholar
  5. Key L.L., Ries W.L., Schiff R. (1987) Osteopetrosis associated with interleukin-2 deficiency. J Bone Miner Res 2(Suppl. 2):85Google Scholar
  6. Loria-Cortes R., Quesada-Calvo E., Cordero-Chaverri E. (1977) Osteopetrosis in children. A report of 26 cases. J Pediatr 91: 43–47PubMedCrossRefGoogle Scholar
  7. Teitelbaum S.L., Tonadravi M.M., Ross F.P. (1996) Osteoclast biology. In: Marms R., Feldman D., Kelsey J. (eds) Osteoporosis, Academic Press, San Diego, pp 61–94Google Scholar

Literatur zu Abschn. 11.6

  1. Devogelaer J.P., Malghem I., Maldague B., Nagant de Deuxchaisnes C. (1987) Radiological manifestations of bisphosphonate treatment with ADP in a child suffering from osteogenesis imperfecta. Skeletal Radiol 16: 360–363PubMedCrossRefGoogle Scholar
  2. Henethorn P.S., Raducha M., Fedde K.N., Lafferty M.A., Whyte M.P. (1992) Different missen se mutations at the tissues-nonspecific alkaline phosphatase gene locus in autosomal recessively inherited forms of mild and severe hypophosphatasia. Proc Natl Acad Sci USA 89: 9924–9928CrossRefGoogle Scholar
  3. Liens D., Delmas P.D., Meunier P.J. (1994) Long-term effects of intravenous pamidronate in fibrous dysplasia of bone. Lancet 323: 953–954CrossRefGoogle Scholar
  4. Pfeilschifter I., Ziegler R. (1998) Wirkung von Pamidronat auf das Beschwerdebild und den Knochenstoffwechsel bei Patienten mit fibröser Dysplasie und McCune-Albright-Syndrom. Medizinische Klinik 99: 352–359CrossRefGoogle Scholar
  5. Shenker A., Weinstein L.S., Sweet D.E., Spiegel A.M. (1994) An activating Gs a mutations is present in fibrous dysplasia of bone in the McCune-Albright syndrome. J Endocrin Metab 79: 750–755CrossRefGoogle Scholar
  6. Stöß H., Pesch H-J., Spranger J. (1979) Therapie der Osteogenesis imperfecta mit (+)-Catechin. Dtsch Med Wochenschr 50: 1774–1778CrossRefGoogle Scholar
  7. Whyte M.P. (1996) Osteogenesis imperfecta. In: Favus M.J. (ed) Primer on the Metabolic bone diseases and dis orders of mineral metabolism. Lippincott & Raven, Philadelphia, pp 382–385Google Scholar
  8. Whyte M.P. (1996) Hypophosphatasia. In Favus M.J. (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott & Raven, Philadelphia, pp 326–328Google Scholar
  9. Ziegler R., Raue F., Cotta H. et al. (1987) Osteogenesis imperfecta und juvenile Osteoporose. Behandlungsversuche mit synthetischem Humancalcitonin. Therapiewoche 37: 1895–1904Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. Ziegler

There are no affiliations available

Personalised recommendations