Skip to main content

Universal Generators for Primary Closures of Galois Fields

  • Conference paper

Abstract

If \( \bar{F} \) is an algebraic closure of a Galois field F, then for each integer n ≥ 1 there is exactly one subfield E n of \( \bar{F} \) containing F and having degree n over F. For a prime number r, we consider the r-primary closure \( {\bar{F}_{r}}: = \bigcup {_{{m \geqslant 0}}{E_{{{r^{m}}}}}} \) over F and prove, under the assumption that r ≥ 7, but without any restriction on the cardinality q of F, the existence of a universal generator for \( {\bar{F}_{r}} \) over F: this is a sequence \( w = {({w_{{{r^{m}}}}})_{{m \geqslant 0}}} \) in \( {\bar{F}_{r}} \) which satisfies all the following properties:

  1. (1)

    \( {w_{{{r^{m}}}}} \) is a. primitive element of \( {E_{{{r^{m}}}}} \) (for all m ≥ 0),

  2. (2)

    \( {w_{{{r^{m}}}}} \) generates a normal basis for \( {E_{{{r^{m}}}}} \) over F (for all m ≥ 0),

  3. (3)

    w is norm-compatible,

  4. (4)

    w is trace compatible.

We prove furthermore that (2) can be strengthened to (2c) \( {w_{{{r^{m}}}}} \) is completely free in \( {E_{{{r^{m}}}}} \) over F (for all m ≥ 0),which means that \( {w_{{{r^{m}}}}} \) simultaneously generates a normal basis for \( {E_{{{r^{m}}}}} \) over \( {E_{{{r^{i}}}}} \) for all i = 0, 1, …, m, whence w is called a complete universal generator for \( {\bar{F}_{r}} \) over F. The results establish a (complete) primitive normal basis theorem for \( {\bar{F}_{r}} \) over F.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Blessbenohl and K. Johnsen, Eine Verschärfung des Satzes von der Normalbasis, J. Algebra 103 (1986), 141–159.

    Article  MathSciNet  Google Scholar 

  2. L. Garlitz, Primitive roots in a finite field. Trans. Am. Math. Soc. 73 (1952), 373–382.

    Article  Google Scholar 

  3. Computeralgebra in Deutschland (Bestandsaufnahme, Möglichkeiten, Perspektiven), Herausgegeben von der Fachgruppe Computeralgebra der Gl, DMV, GAMM, Passau und Heidelberg (1993).

    Google Scholar 

  4. S. D. Cohen, Gauss sums and a sieve for generators of Galois fields, Publ. Math. Debrecen, 56 (2000), to appear.

    Google Scholar 

  5. S. D. Cohen and D. Hachenberger, Primitive normal bases with prescribed trace, Applic. Alg. Engin. Comm. Comp. 9 (1999), 383–403.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. D. Cohen and D. Hachenberger, Primitivity, freeness, norm and trace. Discrete Mathematics 2145 (2000), 135–144.

    Article  MathSciNet  Google Scholar 

  7. H. Davenport, Bases for finite fields. J. London Math. Soc. 43 (1968), 21–49.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. C. Faith, Extensions of normal bases and completely basic fields. Trans. Am. Math. Soc. 85 (1957), 406–427.

    Article  MathSciNet  Google Scholar 

  9. D. Hachenberger, “Finite Fields: Normal Bases and Completely Free Elements”, Kluwer Academic Publishers, Boston, 1997.

    Google Scholar 

  10. D. Hachenberger, Primitive normal bases for towers of field extensions, Finite Fields and their Applications 5 (1999), 378–385.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Hachenberger, Primitive complete normal bases for regular extensions, Glasgow Journal Math., to appear.

    Google Scholar 

  12. K. Hensel, Über die Darstellungen der Zahlen eines Gattungsbereiches für einen beliebigen Primdivisor, J. reine angew. Math. 103 (1888), 230–237.

    MATH  Google Scholar 

  13. D. Jungnickel, “Finite Fields. Structure and Arithmetic”, Bibliographisches Institut, Mannheim, 1993.

    Google Scholar 

  14. H. W. Lenstra, Jr., A normal basis theorem for infinite Galois extensions, Nederl. Akad. Wetensch. Indag. Math 47 (1985), no.2, 221–228.

    Article  MATH  MathSciNet  Google Scholar 

  15. H.W. Lenstra, Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), 217–231.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Lidl and H. Niederreiter, “Finite Fields”, Addison-Wesley, Reading, Massachusetts, 1983.

    Google Scholar 

  17. H. Lüneburg, On the early history of Galois fields, in: D. Jungnickel and H. Niederreiter (eds.).Proceedings of the Fifth International Conference on Finite Fields and Applications, Augsburg, August 1999, this volume.

    Google Scholar 

  18. A. Scheerhorn, Trace-andnorm-compatible extensions of finite fields, AAECC 3 (1992), 199–209.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Heinz Lüneburg on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hachenberger, D. (2001). Universal Generators for Primary Closures of Galois Fields. In: Jungnickel, D., Niederreiter, H. (eds) Finite Fields and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56755-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56755-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62498-8

  • Online ISBN: 978-3-642-56755-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics