Skip to main content

Replication of Hantaviruses

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 256))

Abstract

Hantaviruses have a genome consisting of three segments of negative-sense, single-strand RNA (reviewed in Schmaljohn 1996a). The large (L), medium (M), and small (S) genomic segments, or vRNAs, code for the viral RNA-dependent RNA polymerase (RdRp), envelope glycoproteins (Gl and G2), and nucleoprotein (N), respectively. Nonstructural proteins have not been described for hantaviruses. One of the first molecular features found to distinguish hantaviruses from other viruses in the family Bunyaviridae is the sequence of their conserved, complementary terminal nucleotides on the L, M, and S segments (Schmaljohn and Dalrymple 1983). This characteristic, and the absence of serological cross-reactivity among other members of the family, were the bases for the proposal to establish the Hantavirus genus in the family Bunyaviridae in 1986.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arikawa J, Ito M, Yao JS, Kariwa H, Takashima I, Hashimoto N (1994) Epizootiological studies of hantavirus infection among urban rats in Hokkaido, Japan: evidences for the persistent infection from the sero-epizootiological surveys and antigenic characterizations of hantavirus isolates. J Vet Med Sci 56:27–32

    Article  PubMed  CAS  Google Scholar 

  • Betenbaugh M, Yu M, Kuehl K, White J, Pennock D, Spik K, Schmaljohn C (1995) Nucleocapsid- and virus-like particles assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan virus. Virus Res 38:111–124

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova S, Gavrilovskaya I, Boyko V, Prokhorova N, Linev M, Apekina N, Gorbachkova Y, Rymalov N, Bernshteyn A, Chumakov M (1987) Persistent infection caused by hemorrhagic fever with renal syndrome virus in bank voles (Clethrionomys glareolus) — the natural host of the virus. Mikrobiologicheskiy Zhurnal 49:99–106

    Google Scholar 

  • Bouloy M, Pardigon N, Vialat P, Gerbaud S, Girard M (1990) Characterization of the 5′ and 3′ ends of viral messenger RNAs Isolated from BHK21 cells infected with Germiston virus (Bunyavirus). Virology 175:50–58

    Article  PubMed  CAS  Google Scholar 

  • Bouloy M, Vialat M, Girard M, Pardigon N (1984) A transcript from the S segment of the Germiston bunyavirus is uncapped and codes for the nucleoprotein and a nonstructural protein. J Virol 49: 717–723

    PubMed  CAS  Google Scholar 

  • Bridgen A, Elliott RM (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93:15400–15404

    Article  PubMed  CAS  Google Scholar 

  • Collett MS (1986) Messenger RNA of the M segment RNA of Rift Valley fever virus. Virology 151: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Dohmae K, Nishimune Y (1995) Protection against hantavirus infection by dam’s immunity transferred vertically to neonates. Arch Virol 140:165–172

    Article  PubMed  CAS  Google Scholar 

  • Dohmae K, Okabe M, Nishimune Y (1994) Experimental transmission of hantavirus infection in laboratory rats. J Infect Dis 170:1589–1592

    Article  PubMed  CAS  Google Scholar 

  • Domingo E, Holland JJ (1994) Mutation rates and rapid evolution of viruses. In: Morse SS (ed) The Evolutionary Biology of Viruses. Raven Press, New York

    Google Scholar 

  • Draper DE (1995) Protein-RNA recognition. Annu Rev Biochem 64:593–620

    Article  PubMed  CAS  Google Scholar 

  • Duijsings D, Kormelink R, Goldbach R (1999) Alfalfa mosaic virus RNAs serve as cap donors for tomato spotted wilt virus transcription during coinfection of Nicotiana benthamiana. J Virol 73: 5172–5175

    PubMed  CAS  Google Scholar 

  • Dunn EF, Pritlove DC, Jin H, Elliott RM (1995) Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211:133–143

    Article  PubMed  CAS  Google Scholar 

  • Elliott R (1996) The Bunyaviridae: Concluding remarks and future prospects. In: Elliott RM (ed) The Bunyaviridae. Plenum Press, New York

    Google Scholar 

  • Elliott RM, Dunn E (1999) Analysis of bunyavirus promoter sequences. XI International Congress of Virology, Sydney, Australia

    Google Scholar 

  • Elton D, Metcalf L, Bishop K, Harrison D, Digard P (1999) Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. J Virol 73:7357–7367

    PubMed  CAS  Google Scholar 

  • Eshita Y, Bishop DH (1984) The complete sequence of the M RNA of snowshoe hare bunyavirus reveals the presence of internal hydrophobic domains in the viral glycoprotein. Virology 137:227–240

    Article  PubMed  CAS  Google Scholar 

  • Eshita Y, Ericson B, Romanowski V, Bishop DH (1985) Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J Virol 55:681–689

    PubMed  CAS  Google Scholar 

  • Fodor E, Pritlove DC, Brownlee GG (1994) The influenza virus panhandle is involved in the initiation of transcription. J Virol 68:4092–4096

    PubMed  CAS  Google Scholar 

  • Garcin D, Lezzi M, Dobbs M, Elliott RM, Schmaljohn C, Kang CY, Kolakofsky D (1995) The 5’ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 69:5754–5762

    PubMed  CAS  Google Scholar 

  • Gott P, Stohwasser R, Schnitzler P, Darai G, Bautz EK (1993) RNA binding of recombinant nucleocapsid proteins of hantaviruses. Virology 194:332–337

    Article  PubMed  CAS  Google Scholar 

  • Gupta KC, Kingsbury DW (1982) Conserved polyadenylation signals in two negative-strand RNA virus families. Virology 120:518–523

    Article  PubMed  CAS  Google Scholar 

  • Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1994) Protein family classification based on searching a database of blocks. Genomics 19:97–107

    Article  PubMed  CAS  Google Scholar 

  • Hewlett MJ, Pettersson RF, Baltimore D (1977) Circular forms of Uukuniemi virion RNA: an electron microscopic study. J Virol 21:1085–1093

    PubMed  CAS  Google Scholar 

  • Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucl Acids Res 27:215–219

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Ueda K, Nagata K, Ishihama A (1988) RNA polymerase of influenza virus: role of NP in RNA chain elongation. J Biochem 104:1021–1026

    PubMed  CAS  Google Scholar 

  • Hughes SH, Stock AM (in press) Preparing recombinant proteins for X-ray crystallography. In: Rossmann MG, Arnold E (eds) International Tables for Macromolecular Crystallography, Volume F. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Hutchinson KL, Peters CJ, Nichol ST (1996) Sin Nombre virus mRNA synthesis. Virology 224:139–149

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson KL, Rollin PE, Peters CJ (1998) Pathogenesis of a North American hantavirus, Black Creek Canal virus, in experimentally infected Sigmodon hispidus. Am J Trop Med Hyg 59:58–65

    PubMed  CAS  Google Scholar 

  • Jin H, Elliott RM (1992) Mutagenesis of the L protein encoded by Bunyamwera virus and production of monospecific antibodies. J Gen Virol 73:2235–2244

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Elliott RM (1993a) Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol 67:1396–1404

    PubMed  CAS  Google Scholar 

  • Jin H, Elliott RM (1993b) Non-viral sequences at the 5’ ends of Dugbe nairovirus S mRNAs. J Gen Virol 74:2293–2297

    Article  PubMed  CAS  Google Scholar 

  • Kariwa H, Kimura M, Yoshizumi S, Arikawa J, Yoshimatsu K, Takashima I, Hashimoto N (1996) Modes of Seoul virus infections: persistency in newborn rats and transiency in adult rats. Arch Virol 141:2327–2338

    Article  PubMed  CAS  Google Scholar 

  • Kim GR, McKee KT Jr (1985) Pathogenesis of Hantaan virus infection in suckling mice: clinical, virologic, and serologic observations. Am J Trop Med Hyg 34:388–395

    PubMed  CAS  Google Scholar 

  • Kolakofsky D, Hacker D (1991) Bunyavirus RNA synthesis: genome transcription and replication. Curr Top Microbiol Immunol 169:143–159

    Article  PubMed  CAS  Google Scholar 

  • Krug RM, Plotch SJ, Ulmanen I, Herz C, Bouloy M (1981) The mechanism of initiation of influenza viral RNA transcription by capped RNA primers. In: Bishop DHL, Compans RW (eds) The Replication of Negative Strand Viruses. Elsevier North Holland, New York

    Google Scholar 

  • Kukkonen SK, Vaheri A, Plyusnin A (1998) Completion of the Tula hantavirus genome sequence: properties of the L segment and heterogeneity found in the 3’ termini of S and L genome RNAs. J Gen Virol 79:2615–2622

    PubMed  CAS  Google Scholar 

  • Lee H, Baek L, Johnson K (1982) Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever from wild urban rats. J Infect Dis 146:638–644

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Baek L, Joo Y, Ahn I, Park K (1985) Study of horizontal and vertical transmission of Hantaan and Seoul virus in Apodemus agrarius and in rats. J Korean Soc Virol 15:55–63

    Google Scholar 

  • Lee H, Lee P, Baek L, Song C, Seong I (1981) Intraspecific transmission of Hantaan virus, etiologic agent of Korean hemorrhagic fever, in the rodent Apodemus agrarius. Am Soc Trop Med Hyg 30:1106–1112

    CAS  Google Scholar 

  • Li M, Ramirez BC, Krug RM (1998) RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding site. EMBO J 17:5844–5852

    Article  PubMed  CAS  Google Scholar 

  • Lopez N, Muller R, Prehaud C, Bouloy M (1995) The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69:3972–3979

    PubMed  CAS  Google Scholar 

  • Luytes W, Krystal M, Enami M, Parvin J, Palese P (1989) Amplification, expression, and packaging of a foreign gene by influenza virus. Cell 59:1107–1113

    Article  Google Scholar 

  • Mathews DH, Sabina J, Zucker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • McKee K Jr, Kim G, Green D, Peters C (1985) Hantaan virus infection in suckling mice: virologic and pathologic correlates. J Med Virol 17:107–117

    Article  PubMed  Google Scholar 

  • Meyer BJ, Schmaljohn C (2000a) Accumulation of terminally deleted RNAs may play a role in Seoul virus persistence. J Virol 74:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Meyer BJ, Schmaljohn CS (2000b) Persistent hantavirus infections: characteristics and mechanisms. Trends Microbiol 8:61–67

    Article  PubMed  CAS  Google Scholar 

  • Morita C, Morikawa S, Sugiyama K, Komatsu T, Ueno H, Kitamura T (1993) Inability of a strain of Seoul virus to transmit itself vertically in rats. Jpn J Med Sci Biol 46:215–219

    PubMed  CAS  Google Scholar 

  • Muller R, Poch O, Delarue M, Bishop DH, Bouloy M (1994) Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol 75:1345–1352

    Article  PubMed  Google Scholar 

  • O’Reilly EK, Kao CC (1998) Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252:287–303

    Article  Google Scholar 

  • Patterson JL, Holloway B, Kolakofsky D (1984) La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. J Virol 52:215–222

    PubMed  CAS  Google Scholar 

  • Pattnaik AK, Abraham G (1983) Identification of four complementary RNA species in Akabane virus-infected cells. J Virol 47:452–462

    PubMed  CAS  Google Scholar 

  • Patton JT, Davis NL, Wertz GW (1984) Role of vesicular stomatitis virus proteins in RNA replication. In: Bishop D, Compans R (eds) Nonsegmented negative strand viruses. Paramyxoviruses and rhabdoviruses. Academic Press, Orlando

    Google Scholar 

  • Pettersson RF, Kuismanen E, Rauonnholm R, Ulmanen I (1985) mRNAs of Uukuniemi virus, a bunyavirus. In: Becker Y (ed) Viral messenger RNA transcription, processing, splicing, and molecular structure. NijhofT Publishing, Boston

    Google Scholar 

  • Plyusnin A, Vapalahti O, Vaheri A (1996) Hantaviruses: genome structure, expression and evolution. J Gen Virol 77:2677–2687

    Article  PubMed  CAS  Google Scholar 

  • Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3875

    PubMed  CAS  Google Scholar 

  • Prehaud C, Lopez N, Blok MJ, Obry V, Bouloy M (1997) Analysis of the 3’ terminal sequence recognized by the Rift Valley fever virus transcription complex in its ambisense S segment. Virology 227:189–197

    Article  PubMed  CAS  Google Scholar 

  • Raju R, Kolakofsky D (1987) Translational requirement of La Crosse virus S-mRNA synthesis. J Virol 63:122–128

    Google Scholar 

  • Raju R, Kolakofsky D (1989) The ends of La Crosse virus genome and antigenome RNAs within nucleocapsids are base paired. J Virol 63:122–128

    PubMed  CAS  Google Scholar 

  • Robertson JS, Schubert M, Lazzarini RA (1981) Polyadenylation sites for influenza virus mRNA. J Virol 38:157–163

    PubMed  CAS  Google Scholar 

  • Rodriguez LL, Owens JH, Peters CJ, Nichol ST (1998) Genetic reassortment among viruses causing hantavirus pulmonary syndrome. Virology 242:99–106

    Article  PubMed  CAS  Google Scholar 

  • Rossier C, Patterson J, Kolakofsky D (1986) La Crosse virus small genome mRNA is made in the cytoplasm. J Virol 58:647–650

    PubMed  CAS  Google Scholar 

  • Sankar S, Porter AG (1992) Point mutations which drastically affect the polymerization activity of encephalomyocarditis virus RNA-dependent RNA polymerase correspond to the active site of Escherichia coli DNA polymerase I. J Biol Chem 267:10168–10176

    PubMed  CAS  Google Scholar 

  • Schmaljohn CS (1996a) Bunyaviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields Virology. Lippencott-Raven, Philadelphia

    Google Scholar 

  • Schmaljohn CS (1996b) Molecular Biology of Hantaviruses. In: Elliott RM (ed) The Bunyaviridae. Plenum Press, New York

    Google Scholar 

  • Schmaljohn CS (1998) Hantaviruses (Bunyaviridae). In: Webster RG, Granoff A (eds) Encyclopedia of Virology. W.B. Saunders, London

    Google Scholar 

  • Schmaljohn CS, Dalrymple JM (1983) Analysis of Hantaan virus RNA: evidence for a new genus of Bunyviridae. Virology 131:482–491

    Article  PubMed  CAS  Google Scholar 

  • Schmaljohn CS, Hasty SE, Harrison SA, Dalrymple JM (1983) Characterization of Hantaan virions, the prototype virus of hemorrhagic fever with renal syndrome. J Infect Dis 148:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Seong BL, Brownlee GG (1992) Nucleotides 9 to 11 of the influenza A virion RNA promoter are crucial for activity in vitro. J Gen Virol 73:3115–3124

    Article  PubMed  CAS  Google Scholar 

  • Severson W, Partin L, Schmaljohn CS, Jonsson CB (1999) Characterization of the Hantaan nucleocapsid protein-ribonucleic acid interaction. J Biol Chem 274:33732–33739

    Article  PubMed  CAS  Google Scholar 

  • Shapiro GI, Krug RM (1988) Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol 62:2285–2290

    PubMed  CAS  Google Scholar 

  • Siomi H, Dreyfuss G (1997) RNA-binding proteins as regulators of gene expression. Curr Opin Gen Dev 7:345–353

    Article  CAS  Google Scholar 

  • Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398

    Article  PubMed  CAS  Google Scholar 

  • Tanishita O, Takahashi Y, Okuno Y, Tamura M, Asada H, Dantas J Jr, Yamanouchi T, Domae K, Kurata T, Yamanishi K (1986) Persistent infection of rats with haemorrhagic fever with renal syndrome virus and their antibody responses. J Gen Virol 67:2819–2824

    Article  PubMed  Google Scholar 

  • Uhrig JF, Soellick TR, Minke CJ, Philipp C, Kellmann JW, Schreier PH (1999) Homotypic interaction and multimerization of nucleocapsid protein of tomato spotted wilt tospovirus: identification and characterization of two interacting domains. Proc Natl Acad Sci USA 96:55–60

    Article  PubMed  CAS  Google Scholar 

  • Ulmanen I, Seppala P, Pettersson RF (1981) In vitro translation of Uukuniemi virus-specific RNAs: identification of a nonstructural protein and a precursor to the membrane glycoproteins. J Virol 37:72–79

    PubMed  CAS  Google Scholar 

  • Urquidi V, Bishop DHL (1992) Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J Gen Virol 73:2255–2265

    Article  PubMed  CAS  Google Scholar 

  • Vialat P, Bouloy M (1992) Germiston virus transcriptase requires active 40S ribosomal subunits and utilizes capped cellular RNAs. J Virol 66:685–693

    PubMed  CAS  Google Scholar 

  • Wo wer IK, Wower J, Zimmermann RA (1998) Ribosomal protein L27 participates in both 50S subunit assembly and the peptidyl transferase reactions. J Biol Chem 273:19847–19852

    Article  Google Scholar 

  • Yoo YC, Yoshimatsu K, Yoshida R, Tamura M, Azuma I, Arikawa J (1993) Comparison of virulence between Seoul virus strain SR-11 and Hantaan virus strain 76–118 of hantaviruses in newborn mice. Microbiol Immunol 37:557–562

    PubMed  CAS  Google Scholar 

  • Zhang F (1984) Seroepidemiological investigation on hemorrhagic fever with renal syndrome. III. Carrier state and familial aggregation. Chung Hua Liu Hsing Ping Hsueh Tsa Chih 5:5–8

    PubMed  CAS  Google Scholar 

  • Zhang X, Takashima I, Hashimoto N (1988) Role of maternal antibody in protection from hemorrhagic fever with renal syndrome virus infection in rats. Arch Virol 103:253–265

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Takashima I, Mori F, Hashimoto N (1989) Comparison of virulence between two strains of Rattus serotype hemorrhagic fever with renal syndrome HFRS virus in newborn rats. Microbiol Immunol 33:195–206

    PubMed  CAS  Google Scholar 

  • Zucker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski J, Clark BFC (eds) RNA Biochemistry and Biotechnology. Kluwer Academic Publishers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jonsson, C.B., Schmaljohn, C.S. (2001). Replication of Hantaviruses. In: Schmaljohn, C.S., Nichol, S.T. (eds) Hantaviruses. Current Topics in Microbiology and Immunology, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56753-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56753-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62491-9

  • Online ISBN: 978-3-642-56753-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics