Skip to main content

Biodiversitätsmessung bei Pflanzen anhand molekularer Daten: Ein Beitrag zur wissenschaftlichen Definition von Biodiversität

  • Chapter

Part of the book series: Ethics of Science and Technology Assessment ((ETHICSSCI,volume 10))

Abstract

Ziel unserer Arbeit ist es, einen Beitrag zur wissenschaftlichen Definition des Begriffs „Biodiversität“ zu leisten. Dazu vergleichen wir Verfahren zur Biodiversitätsmessung anhand molekulargenetischer Daten aus Pflanzen auf ihre Eignung, Biodiversität quantitativ zu charakterisieren. Wir beschränken uns dabei auf solche Verfahren, die auf allen Ebenen biologischer Organisation anwendbar sind, auf denen Biodiversität beschrieben wird (Ehrlich u. Wilson 1991; Soule 1991; Wilson 1993).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avise J, Wollenberg K (1997) Phylogenetics and the origin of species. PNAS 94: 7748–7755

    Article  Google Scholar 

  • Bachmann K (1998) Species as units of diversity: An outdated concept. Theory Biosci 117: 213–230

    Google Scholar 

  • Banks J, Fedoroff N (1989) Patterns of developmental and heritable change in methylation of the suppressor-mutator transposable element. Developmental Genetics 10: 425–437

    Article  Google Scholar 

  • Barratt EM, Deaville R, Burland TM, Jones G, Racey PA, Wayne RK (1997) DNA answers the call of pipistrelle bat species. Nature 387: 138–139

    Article  Google Scholar 

  • Beadle G (1980) The ancestry of corn. Sci Am 242: 96–103

    Article  Google Scholar 

  • Boeke JD, Devine SE (1998) Yeast retrotransposons: Finding a nice quiet neighborhood. Cell 93: 1087–1089

    Article  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 22:85–95

    Article  Google Scholar 

  • Buckler EI, Holtsford T (1996) Zea systematics: ribosomal ITS evidence. Mol Biol Evol 13: 612–622

    Article  Google Scholar 

  • Caporal LH, (ed) (1999) Molecular Strategies in Biological Evolution. Annals of the New York Academy of Sciences, Vol. 870. New York Ac Sc, New York

    Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons H, Angenent G, van Tunen, A (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859–1868.

    Google Scholar 

  • Crawford DJ (1990) Plant Molecular Systematics. Wiley, New York.

    Google Scholar 

  • Crozier R, Kusmierski R (1994) Genetic distances and the setting of conservation priorities. In: Loeschcke V, Tomiuk J, Kain J (eds) Conservation Genetics. Birkhäuser, Basel, pp 1311–1323.

    Google Scholar 

  • Davies B, Schwarz-Sommer Z (1994) Control of floral organ identity by homeotic MADS-box transcription factors. In: Nover L (ed) Results and problems in cell Differentiation, Vol. 20. Springer, Berlin, pp 235–258

    Google Scholar 

  • Doebley J (1990a) Molecular evidence and the evolution of maize. Economic Bot 3 Suppl.: 6–27

    Article  Google Scholar 

  • Doebley J (1990b) Molecular systematics of ZEA (gramineae) Maydica 35: 143–150

    Google Scholar 

  • Doebley J (1992) Mapping the genes that made maize. Trends in Genet 8: 302–307

    Article  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485–488

    Article  Google Scholar 

  • Dubreuil P, Charcosset A (1998) Genetic diversity within and among maize populations: A comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96: 577–587

    Article  Google Scholar 

  • Ehrlich PR, Wilson, EO (1991) Biodiversity studies: Science and policy. Science 253: 758–762

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP — phylogeny inference package (version 3.2). Cladistics 5: 164–166

    Google Scholar 

  • Felsenstein J (1995) PHYLIP — phylogeny inference package 3.5c. Distributed by the author, available via ftp from ftp://ftp.genetics.washington.edu

  • Hagemann R (1999) Allgemeine Genetik. Urban und Fischer, München

    Google Scholar 

  • Hanson B, Chin G, Sugden A, Culotta E (1999) The diversity of evolution. Science 284: 2105

    Article  Google Scholar 

  • Hu S, Oktsubo E, Davidson N, Saedler H (1975) Electron microscope heteroduplex studies of sequence relations among bacterial plasmids: Identification and mapping of the insertion sequences IS1 and IS2 in F and R plasmids. J Bacteriology 122: 764–775

    Google Scholar 

  • Huijser P, Klein J, Lönnig WE, Meijer H, Saedler H, Sommer H (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J 11: 1239–1249

    Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. PNAS 94 7704–7711

    Article  Google Scholar 

  • Kim JT (1996a) Distance distribution complexity: A measure for the structured diversity in evolving populations. In: Langton CG, Shimohara K (eds) Artificial Life V. MIT Press, Cambridge, pp 281–288

    Google Scholar 

  • Kim JT (1996b) Untersuchungen zur Evolution von morphologischer und taxonomischer Diversität und Komplexität anhand von Computermodellen. Dissertation, Universität zu Köln, ftp://ftp.mpiz-koeln.mpg.de/pub/mpiz/zwdv/kim/diss/kimdiss.ps.gz

  • Kim JT, Theißen G (1999) The MADS-box gene home page. http://www.mpiz-koeln.mpg.de/mads/

  • Knippers R (1997) Molekulare Genetik. Thieme, Stuttgart

    Google Scholar 

  • Kunze R, Saedler H, Lönnig WE (1997) Plant transposable elements. Advances in Botanical Research 27: 331–470

    Article  Google Scholar 

  • Kurths J, Schwarz U, Witt A, Krampe R, Abel M (1995) Measures of complexity in signal analysis. In: Katz RA (ed) Chaotic, Fractal, and Nonlinear Signal Processing. Woodbury, New York, pp 33–54

    Google Scholar 

  • Lebrun P, N’cho Y, Seguin M, Grivet L, Baudouin L (1998) Genetic diversity in coconut (cocos nucifera 1.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101: 103–108

    Article  Google Scholar 

  • Li WH, Graur D (1991) Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Livini C, Ajmone-Marsan P, Melchinger A, Messmer M, Motto M (1992) Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor Appl Genet 84: 17–25

    Article  Google Scholar 

  • Mandel M, Gustafson-Brown C, Savidge B, Yanofsky M (1992) Molecular characterization of the arabidopsis floral homeotic gene APETALA1. Nature 360: 273–277

    Article  Google Scholar 

  • Martinez ND (1996) Defining and measuring functional aspects of biodiversity. In: Gaston K (ed) Biodiversity — A Biology of Numbers and Difference. Blackwell Science, London, pp 114–148

    Google Scholar 

  • Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950

    Article  Google Scholar 

  • McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390: 162–165

    Article  Google Scholar 

  • Meyerowitz E (1998) Genetic and molecular mechanisms of pattern formation in arabidopsis flower development. J Plant Res 111: 233–242

    Article  Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theißen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94: 2415–2420

    Article  Google Scholar 

  • Nee S, May RM (1997) Extinction and the loss of evolutionary history. Science 278: 692–694

    Article  Google Scholar 

  • Nevers P, Shepherd N, Saedler H (1986) Plant transposable elements. Advances in Botanical Research 12: 103–203

    Article  Google Scholar 

  • Nyffeler R (1999) A new ordinal classification of the flowering plants. Trends Evol Ecol 14: 168–170

    Article  Google Scholar 

  • Parkinson CL, Adams KL, Palmer JD (1999) Multigene analyses identify the three earliest linbeages of extant flowering plants. Current Biology 9: 1485–1488

    Article  Google Scholar 

  • Putnam H (1993) Von einem realistischen Standpunkt. Rowohlt, Reinbek, Berlin

    Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis, PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407

    Article  Google Scholar 

  • Raff R (1996) The shape of life — Genes, development, and the evolution of animal form. The University of Chicago Press, Chicago.

    Google Scholar 

  • Saedler H, Theißen G (1994) ‘On the origin of species’: Mythologische und molekularbiologische Vorstellungen zur Evolution von Mais. Jahrbuch 1993 Leopoldina 39: 261–275

    Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936

    Article  Google Scholar 

  • Smith JSC, Smith OS, Wright S, Wall SJ, Walton M (1992) Diversity of U.S. hybrid maize germplasm as revealed by restriction fragment length polymorphisms. Crop Science 32: 598–604

    Article  Google Scholar 

  • Smith O, Smith J (1992) Measurement of genetic diversity among maize hybrids: A comparison of isozymic, RFLP, pedigree, and heterosis data. Maydica 37: 53–60

    Google Scholar 

  • Solow AR, Polasky S, Broadus J (1993) On the measurement of biological diversity. Journal of Environmental Economics and Management 24: 60–68

    Article  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404

    Article  Google Scholar 

  • Sommer H, Beltràn JP, Huijser P, Pape H, Lönnig WE, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605–613

    Google Scholar 

  • Soulé ME (1991) Conservation: Tactics for a constant crisis. Science 253: 744–750

    Article  Google Scholar 

  • Tautz D (1996) Selector genes, polymorphisms, and evolution. Science 271: 160–161

    Article  Google Scholar 

  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim J, Münster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115–149

    Article  Google Scholar 

  • Theißen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Current Opinion in Genetics and Development 5: 628–639

    Article  Google Scholar 

  • Theißen G, Saedler, H (1998) Molecular architects of plant body plans. Progress in Botany 59: 227–256

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: A new concept for DNA fingerprinting. Nucl. Acids Res., 23:4407–4414

    Article  Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398: 236–239

    Article  Google Scholar 

  • Weigel D, Meyerowitz E (1994) The ABCs of floral homeotic genes. Cell 78: 203–209

    Article  Google Scholar 

  • Whitkus R, de la Cruz M, Mota-Bravo L, Gómez-Pompa A (1998) Genetic diversity and relationships of cacao (theobroma cacao 1.) in southern mexico. Theor Appl Genet 96: 621–627

    Article  Google Scholar 

  • Williams PH, Humphries CJ, Vane-Wright RI (1991) Measuring biodiversity taxonomic relatedness for conservation priorities. Australian Systematic Botany 4: 665–680

    Article  Google Scholar 

  • Willson SJ (1998) Measuring inconsistency in phylogenetic trees. J theor Biol 190: 15–36

    Article  Google Scholar 

  • Wilson EO (1993) Biodiversity: Challenge, science, opportunity. Amer Zool 34: 5–11

    Google Scholar 

  • Winter KU, Becker A, Münster T, Kim JT, Saedler H, Theißen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci USA 96: 7342–7347

    Article  Google Scholar 

  • Yanofsky M, Ma H, Bowman J, Drews G, Feldman K, Meyerowitz E (1990) The protein encoded by the arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35–39

    Article  Google Scholar 

  • Yu K, Pauls K (1992) Optimization of the PCR program for RAPD analysis. Nucl Acids Res 20: 2606

    Article  Google Scholar 

  • Zhu J, Gale M, Quarrie S, Jackson M, Bryan G (1998) AFLP markers for the study of rice biodiversity. Theoretical and Applied Genetics 96: 602–611

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, J.T., Schwöbbermeyer, H., Theißen, G., Saedler, H. (2001). Biodiversitätsmessung bei Pflanzen anhand molekularer Daten: Ein Beitrag zur wissenschaftlichen Definition von Biodiversität. In: Janich, R., Gutmann, M., Prieß, K. (eds) Biodiversität. Ethics of Science and Technology Assessment, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56739-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56739-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42658-5

  • Online ISBN: 978-3-642-56739-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics