Skip to main content

Morphological Aspects of Silicon Oxidation in Aqueous Solutions

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 46))

Abstract

Aqueous etching of silicon is important to many processes in the microelectronics industry, including the cleaning of silicon wafers, the detection of dislocations and defects, and the fabrication of micromachined structures. In most of these processes, the anisotropy of the etchant is very important, because it controls the morphology of the etched surfaces. In some cases, the microscopic anisotropy or site-specificity of the etchant is of primary importance. For example, Ohmi et al.[1]have shown that atomic-scale roughness generated by RCA cleaning solutions, which are commonly used to clean silicon wafers, can degrade the performance of metal-oxide-semiconductor fieldeffect transistors (MOSFETs) subsequently fabricated on the cleaned wafer. To prevent this, highly anisotropic silicon cleaning solutions that produce atomically smooth Si(100) faces are highly sought after. Microscopic anisotropy also controls the performance of defect etchants, which are commonly used to quantify dislocation densities. These etchants apparently attack the strained bonds around each atomicscale dislocation and produce macroscopic etch pits that can be detected optically. For other purposes, atomicscale etchant anisotropy is less important than the macroscopic anisotropy — the face-specificity. For example, basic solutions etch Si(111) faces exceedingly slowly, so these etchants can be used to easily fabricate smooth, precisely oriented (111) facets for vee-grooves 2 , inkjet nozzles 3, or other micromachining applications 4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Electron Dev. Lett. 12, 652 (1991).

    Article  CAS  Google Scholar 

  2. P.-Z. Chang and L.-J. Yang, J. Micromech. Microeng. 8, 182 (1998).

    Article  CAS  Google Scholar 

  3. E. Bassous and E. F. Baran, J. Electrochem. Soc. 125, 1321 (1978).

    Article  CAS  Google Scholar 

  4. M. Elwenspoek and H. V. Jansen, Silicon Micromachining (Cambridge, 1998).

    Google Scholar 

  5. K. Sangwal, Etching of Crystals (North Holland, Amsterdam, 1987).

    Google Scholar 

  6. G. W. Trucks, K. Raghavachari, G. S. Higashi, and Y. J. Chabal, Phys. Rev. Lett. 65, 504 (1990).

    Article  CAS  Google Scholar 

  7. R. C. DeMattei and R. S. Feigelson in Electrochemistry of Semiconductors and Electronics, edited by J. McHardy and F. Ludwig (Noyes Publications, Park Ridge, NJ, 1992).

    Google Scholar 

  8. J. Flidr, Y.-C. Huang, T. A. Newton and M. A. Hines, J. Chem. Phys. 108, 5542 (1998).

    Article  CAS  Google Scholar 

  9. Y.-C. Huang, J. Flidr, T. A. Newton and M. A. Hines, Phys. Rev. Lett. 80, 4462 (1998).

    Article  CAS  Google Scholar 

  10. J. Flidr, Y.-C. Huang, T. A. Newton, and M. A. Hines, Chem. Phys. Lett. 302, 85 (1999).

    Article  CAS  Google Scholar 

  11. J. Flidr, Y.-C. Huang, and M. A. Hines, J. Chem. Phys. 111, 6970 (1999).

    Article  CAS  Google Scholar 

  12. T. A. Newton, Y.-C. Huang, L. A. Lepak and M. A. Hines, J. Chem. Phys. 111, 9125 (1999).

    Article  CAS  Google Scholar 

  13. V. A. Burrows, Y. J. Chabal, G. S. Higashi, K. Raghavachari, and S. B. Christman, Appl. Phys. Lett. 53, 998 (1988).

    Article  CAS  Google Scholar 

  14. G. S. Higashi, Y. J. Chabal, G. W. Trucks, and K. Raghavachari, Appl. Phys. Lett. 56, 656 (1990).

    Article  CAS  Google Scholar 

  15. P. Jakob and Y. J. Chabal, J. Chem. Phys. 95, 2897 (1991).

    Article  CAS  Google Scholar 

  16. M. A. Hines, Y. J. Chabal, T. D. Harris, and A. L. Harris, Phys. Rev. Lett. 71, 2280 (1993).

    Article  CAS  Google Scholar 

  17. We use the shorthand terminology “(112) step site” to denote the sites that would terminate a straight step formed by miscutting a Si(111) surface to- wards the (112) direction. There are two close-packed step directions on Si(111) surfaces - (112) and (112) steps.

    Google Scholar 

  18. The macroscopic rate of Si(111) etching is linearly dependent on [0H-] and independent of [HF] for solutions near 40% NH4F (aq.). T. A. Newton, Ph.D. thesis, (Cornell University, 2000).

    Google Scholar 

  19. M. A. Hines, Y. J. Chabal, T. D. Harris, and A. L. Harris, J. Chem. Phys. 101, 8055 (1994).

    Article  CAS  Google Scholar 

  20. L. H. Sommer, Stereochemistry, Mechanism and Silicon (McGraw-Hill, New York, 1965).

    Google Scholar 

  21. E. G. Rochow, in Comprehensive Inorganic Chemistry, edited by J. C. Bailar, Jr., H. J. Emelens, and R. Nyholrn (Pergamon, Oxford, 1973), Vol. 1, p. 123.

    Google Scholar 

  22. D. A. Armitage, “Organosilanes”, in Comprehensive Organometallic Chemistry, edited by G. Wilkinson (Pergamon, Oxford, 1982), Vol. 2, p. 1.

    Chapter  Google Scholar 

  23. K. Raghavachari, P. Jakob, and Y. J. Chabal, Chem. Phys. Lett. 206, 156 (1993).

    Article  CAS  Google Scholar 

  24. C. P. Wade and C. E. D. Chidsey, Appl. Phys. Lett. 71, 1679 (1997).

    Article  CAS  Google Scholar 

  25. B. Puers and W. Sansen, Sensors and Actuators A 21–23, 1036 (1990)

    Article  Google Scholar 

  26. S. A. Campbell, K. Cooper, L. Dixon, R. Earwaker, S. N. Port, and D. J. Schiffrin, J. Micromech. Microeng. 5, 209 (1995).

    Article  CAS  Google Scholar 

  27. R. J. P. Corriu and C. Guerin, Adv. Organometal. Chem. 20, 265 (1982).

    Article  CAS  Google Scholar 

  28. E. E. Gruber and W. W. Mullins, J. Phys. Chem. Solids 28, 875 (1967).

    Article  CAS  Google Scholar 

  29. M. E. Fisher and D. S. Fisher, Phys. Rev. B 25, 3192 (1982).

    Article  CAS  Google Scholar 

  30. N. C. Bartelt, T. L. Einstein, and E. D. Williams, Surf. Sci. 240, L591 (1990).

    Article  CAS  Google Scholar 

  31. T. L. Einstein and O. Pierre-Louis, Surf. Sci. 424, L299 (1999).

    Article  CAS  Google Scholar 

  32. Y.-C. Huang, J. Flidr, T. A. Newton and M. A. Hines, J. Chem. Phys. 109, 5025 (1998).

    Article  CAS  Google Scholar 

  33. http://www.chem.cornell.edu/mahll/Hillock.html.

  34. F. C. Frank, Growth and Perfection of Crystals, edited by R. H. Doremus, B. W. Roberts, and D. Turnbull (Wiley, New York, 1958), p. 411; N. Cabrera and D. A. Vermilyea, ibid, p. 393.

    Google Scholar 

  35. P. van der Putte, W. J. P. van Enckevort, L. J. Giling, and J. Bloem, J. Crystal Growth 43, 659 (1978).

    Article  Google Scholar 

  36. R. A. Wind and M. A. Hines, Surf. Sci. 460, 21 (2000).

    Article  CAS  Google Scholar 

  37. K. Sato, M. Shikida, Y. Matsushima, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Yamamoto, Sensors and Actuators A 64, 87 (1998).

    Article  Google Scholar 

  38. E. Herr and H. Baltes, Sensors and Actuators A 31, 283 (1992).

    Article  Google Scholar 

  39. K. Sangwal, Etching of Crystals (North Holland, Amsterdam, 1987) Ch. 4.

    Google Scholar 

  40. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, J. Electrochem. Soc. 137, 3612 (1990).

    Article  CAS  Google Scholar 

  41. See, for example, P. Allongue, Phys. Rev. Lett. 77, 1986 (1996); R. Houbertz, U. Memmert, and R. J. Behm, Surf. Sci. 396, 198 (1998).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hines, M.A. (2001). Morphological Aspects of Silicon Oxidation in Aqueous Solutions. In: Chabal, Y.J. (eds) Fundamental Aspects of Silicon Oxidation. Springer Series in Materials Science, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56711-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56711-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62583-1

  • Online ISBN: 978-3-642-56711-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics