Advertisement

The General Linear Model — a Solution by Means of the Condition Adjustment

  • Gabriel Nkuite
  • Jan van Mierlo
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 122)

Abstract

It is well known that the least squares estimation is equivalent to the Best Linear Unbiased Estimation (BLUE) in the case. that the covariance matrix of the observations is positive definite. If the variance covariance matrix is positive semi-definite the inverse of this matrix (the weight matrix) is in general not unique so that the question arises: which weight matrix has to be used in least squares estimation to get the BLUE? This question is discussed in this paper and an alternative solution by means of the condition adjustment is given. The numerical problems that can occur when the modified covariance matrix is used can be avoided by using the alternative solution. With respect to the theory presented in this paper, it is shown how important a correct definition of weight matrix in the least squares method is.

Keywords

General Linear Model Weight Matrix Design Matrix Variance Covariance Matrix Condition Adjustment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjerhammar, A. (1973). Theory of Errors and Generalized Matrix Inverse. Elsevier Scientific Publishing Company, Amsterdham-London-New York.Google Scholar
  2. Caspary, W. and Wichmann, K. (1994). Linear Modelle. R. Oldenbourg Verlag GmbH, München.Google Scholar
  3. Grafarend, E.W. and Schaffrin, B. (1993). Aus-gleichnungsrechung in linear Modellen. BI-Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zürich.Google Scholar
  4. Höpcke, W. (1980). Fehlerlehre und Ausgleichungsrechnung. Walter de Gruyter, Berlin-New York.Google Scholar
  5. Illner, L. (1985). Datumsfestlegung in frein Netzen. Deutsche Geodätische Kommission, München, Reihe C, 309.Google Scholar
  6. Koch, K.R. (1997). Parameterschätzung und Hypothesentests. Dümmler Verlag, Bonn.Google Scholar
  7. Meissl, P. (1969). Zusammenfassung und Ausbau der inneren Fehlertheorie eines Punkthaufens. Deutsche Geodätische Kommission, München, Reihe A, 61.Google Scholar
  8. Nkuite, G. (1998). Ausgleichung mit singülarer Varianzkovarianzmatrix am Beispiel der geo-mentrischen Deformationsanalyse. Deutsche Geodätische Kommission, München, Reihe C, 501.Google Scholar
  9. Pelzer, H. (1971). Zur analyse geodätischer Deformationsmessungen. Deutsche Geodätische Kommission, München, Reihe C, 501.Google Scholar
  10. Pelzer, H, (1974a). Zur Behandlung singulärer Ausgleichungsaufgaben I—Unvollständige Beobachtungen. Zeitschrift für Vermessungswesen, 5:181–194.Google Scholar
  11. Pelzer, H. (1974b). Zur Behandlung singulärer Ausgleichungsaufgaben II—Singuläre Kofaktoren-matrix der Beobachtungsvektors. Zeitschrift für Vermessungswesen, 11:479–488.Google Scholar
  12. Schaffrin, B. (1983). Varianz-Kovarianz-Komponenten-Schätzung bei der Ausgleichung heteogener Wiederholungsmessungen. Deutsche Geodätische Kommission, München, Reihe C, 282.Google Scholar
  13. Schaffrin, B. and Garfarend, E. (1986). Generating Classes of equivalent linear Models by Nuis-sance Parameter Elimination. Manuscripta geo-daetica, 11(4):262–271.Google Scholar
  14. Toutenburg, H. (1992). Linear Modelle. Physica-Verlag, Heidelberg.Google Scholar
  15. van Mierlo, J. (1988). Betrachtungen zu sin-gulären Ausgleichungmodellen. Mensuration, Photogrammetrie, Génie rural, 7/1988:366–370.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Gabriel Nkuite
    • 1
  • Jan van Mierlo
    • 1
  1. 1.Geodetic InstituteUniversity of Karlsuruhe (TH)KarlsuruheGermany

Personalised recommendations