Advertisement

The Spheroidal Stokes Boundary Value Problem (extended abstract)

  • A. Ardalan
  • E. W. Grafarend
  • M. G. Sideris
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 122)

Abstract

The target of the spheroidal Gauss-Listing geoid determination is presented as a solution of the spheroidal fixed-free two-boundary value problem based on a spheroidal Bruns transformation (spheroidal Bruns formula). The nonlinear spheroidal Bruns transform (nonlinear spheroidal Bruns formula), and the spheroidal fixed part and the spheroidal free part of the two-boundary value problem have been derived. Four different spheroidal gravity models are treated, in particular whether they pass the test to fit to the postulate of a level ellipsoidal gravity field, namely of Somigliana-Pizzetti type. The free part of the fixed-free two-boundary value problem in its linearized version agrees with the spheroidal Stokes boundary value problem.

Keywords

Gravity Potential Normal Gravity Geoidal Undulation Physical Geodesy Geometry Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eitschberger, B. and Grafarend, E. W. (1974). Worlg geodetic datum WD 1 end WD2 from satellite and terrestrial observations. Bulletin Géodésique, 114:364–385.CrossRefGoogle Scholar
  2. Grafaxend, E.W. and Ardalan, A. A. (1997). W 0: an estimate in the Finnish height datum N60, epoch 193.4 from twenty-five GPS points of the Baltic Sea level project. Journal of Geodesy, 71:673–679.CrossRefGoogle Scholar
  3. Grafarend, E.W. and Ardalan, A. A. (1998). World Geodetic Datum 2000. In Rummel, R., editor, Towards and integrated global geodetic observing system. Munich, 5-9 October 1998.Google Scholar
  4. Grafarend, E.W. and Ardalan, A. A. (1999). The form parameters of the Somigliana-Pizzetti level ellipsoid from current best estimates of fundamental geodetic parameters best on functional analytical review of the Somigliana-Pizzetti gravitational field. Journal of Geodesy. Under review.Google Scholar
  5. Grafarend, E.W. and Engels, J. (1992a). A global representation of ellipsoidal heights — geoidal undulations or topographic heights — in terms of orthonormal functions, Parti: amplitude-modified spherical harmonics functions}. Manuscripta geodaetica, 17:52–58.Google Scholar
  6. Grafarend, E.W. and Engels, J. (1992b). A global representation of ellipsoidal heights—geoidal undulations or topographic heights—in terms of orthonormal functions, Part2: phase-modified spherical harmonics functions. Manuscripta geodaetica, 17:59–64.Google Scholar
  7. Grafarend, E. W., Krarup, T., and Syffus, R. (1996). An algorithm for the inverse of a multivariate homogeneous polynimial of degree n. Journal of Geodesy, 70:276–286.Google Scholar
  8. Grafarend, E.W. and Niemeier, W. (1971). The free nonlinear boundary value problem of physical geodesy. Bulletin Géodésique, 101:243–262.CrossRefGoogle Scholar
  9. Grafarend, E.W. and Sansò, F. (1984). The multi-body space-time geodetic boundary value problem and the Honkasalo term. Geophys. J. R. astr. Soc, 78:255–275.CrossRefGoogle Scholar
  10. Martinec, Z. (1998a). Boundary-value problem for gravimetric determination of a precise geoid. Springier Verlag, Berlin.Google Scholar
  11. Martinec, Z. (1998b). Construction of Green’s function for the Stokes boundary-value problem with ellipsoidal corrections in the boundary condition. Journal of Geodesy, 7/8:460–47CrossRefGoogle Scholar
  12. Martinec, Z. and Grafarend, E. W. (1997a). Construction of Green’s functions to external Dirichelet boundary-value problem for the Laplace equation on an ellipsoid of revolution. Journal of Geodesy, 71:562–570.CrossRefGoogle Scholar
  13. Martinec, Z. and Grafarend, E. W. (1997b). Solution to the Stokes boundary-value problem on an ellipsoid of revolution. Studia geoph. etgeod., 41:103–129.CrossRefGoogle Scholar
  14. Mihelcic (1972). Über eine Theorie zur Simultanauswertung von flug-gravimetrischen und terrestrisch-gravimetrischen Messungsdaten. Deutsche Geodätische Kommision, der Bayerischen Akademie der Wissenschaften, Report C172, München.Google Scholar
  15. Ritter, S. (1998a). The null field method for the ellipsoidal Stokes problem. Journal of Geodesy, 2:101–106.CrossRefGoogle Scholar
  16. Ritter, S. (1998b). On the class of Robin boundary value problem in physical geodesy. J. Math. Phys., 39:3916–3926.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • A. Ardalan
    • 1
  • E. W. Grafarend
    • 1
  • M. G. Sideris
    • 2
  1. 1.Department of Geodesy and Geo InformaticStuttgart UniversityGermany
  2. 2.Department of Geomatics EngineeringUniversity of CalgaryAlbertaCanada

Personalised recommendations