Advertisement

Thermal Effects in High-Density Recording Media

  • Andreas Moser
  • Dieter Weller
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 41)

Abstract

Magnetic recording is an efficient method to record, store and retrieve vast amounts of digital information. In such a storage system, instability of the stored data or data loss cannot be tolerated. This chapter reviews the effects of thermal excitations on the stability of stored data in magnetic recording media. In order to understand the effect of thermal excitations we first consider energy barriers that prevent the system from spontaneous transitions between different states. In granular magnetic recording media, as used today, these energy barriers are governed by the product of the anisotropy energy density and the grain volume. As head and media parameters are scaled to smaller dimensions, which has been the main path toward achieving higher areal densities, grain volumes are reduced in order to keep the number of grains per bit cell approximately constant. As a result, energy barriers become smaller and thermal excitations may give rise to superparamagnetic effects, which in turn may lead to signal loss over time. In order to avoid superparamagnetic effects and to ensure data stability one typically compensates for the reduction in grain volume by increasing the anisotropy energy density. This approach, however, results in higher write coercivities and is naturally limited by the available write field of the recording head, which traces the thermal stabihty problem in magnetic recording media more to a switching field and writing problem than to an intrinsic media grain stability problem.

Keywords

Magnetization Reversal Areal Density Stability Ratio Switching Field Magnetic Recording Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.H. Charap, Pu Ling Lu, and Yanjun He, “Thermal stability of recorded information at high densities,” IEEE Trans. Magn., vol. 33, pp. 978, 1997.ADSCrossRefGoogle Scholar
  2. 2.
    H.N. Bertram, H. Zhou, and R. Gustafson, “Signal to noise ratio scaling and density limit estimates in longitudinal magnetic recording,” IEEE Trans. Magn., vol. 34, pp. 1845, 1998.ADSCrossRefGoogle Scholar
  3. 3.
    R. Wood, “The feasibility of magnetic recording at 1 terabit per square inch,” IEEE Trans. Magn., vol. 36, pp. 36, 2000.ADSCrossRefGoogle Scholar
  4. 4.
    K. Stoev “Demonstration and characterization of greater than 50 GBit/in3 reording systems,” The 8th Joint M MM-Inter mag Converence, San Antonio, TX, Jan. 7–11, 2001, paper EA-12 (IEEE Trans. Magn. (to be published)).Google Scholar
  5. 5.
    D.A. Thompson, and J.S. Best, IBM J. Res. Develop., vol. 44, pp. 311, 2000.CrossRefGoogle Scholar
  6. 6.
    L. Néel, “Théory du trainage magnétique,” Ann. Geophys, vol. 5, pp. 99, 1949.Google Scholar
  7. 7.
    W.F. Brown, Jr, “Thermal fluctuations of a single-domain particle,” Phys. Rev., vol. 130, pp. 1677, 1963.ADSCrossRefGoogle Scholar
  8. 8.
    E.G. Stoner and E.P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Trans. Roy. Soc., vol. A240, pp. 599, 1948.ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    H. Pfeiffer, “Determination of anisotropy field distribution in particle assemblies taking into account thermal fluctuation,” Phys. Stat. Sol. A, vol. 118, pp. 295, 1990.ADSCrossRefGoogle Scholar
  10. 10.
    H. Kronmüller and T. Reininger, “Micromagnetic background of magnetization processes in inhomogeneous ferromagnetic alloys,” J. Magn. Magn. Mater., vol. 112, pp. 1, 1992.ADSCrossRefGoogle Scholar
  11. 11.
    H.N. Bertram and H.J. Richter, “Arrhenius Néel thermal decay in polycrystafline thin film media,” J. Appl. Phys., vol. 85, pp. 4991, 1999.ADSCrossRefGoogle Scholar
  12. 12.
    R.H. Victora, “Predicted time dependence of the switching field for magnetic materials,” Phys. Rev. Lett, vol. 63, pp. 457, 1989.ADSCrossRefGoogle Scholar
  13. 13.
    M. Doerner, X. Bian, M. Madison, et al., “Demonstration of 35 GB/in2 using media on glass substrates,” IEEE Trans. Magn. vol. 37, pp. 103, 2001.CrossRefGoogle Scholar
  14. 14.
    W. Giurzynska, G. Haneczok, and J. Zbroszczyk, “Magnetic after effect spectra analysis by applying the lognormal distribution of relaxation times,” J. Magn. Magn. Mater., vol. 189, pp. 384, 1998.ADSCrossRefGoogle Scholar
  15. 15.
    S.M. Stinnett, J.W. Harrell, A.F. Khapikov, and W.D. Doyle, “The relationship between the dynamic remanent coercivity and the viscosity and irreversible susceptibility in magnetic media,” IEEE Trans. Magn., vol. 36, pp. 148, 2000.ADSCrossRefGoogle Scholar
  16. 16.
    Gheng Yang, J.M. Sivertsen, and J.H. Judy, “Time decay of the remanent magnetization in longitudinal thin film recording media as a function of distributions of grain size and easy axis orientation,” IEEE Trans. Magn., vol. 34, pp. 1606, 1998.ADSCrossRefGoogle Scholar
  17. 17.
    Yun Zhang and H.N. Bertram, “Thermal decay in high density disk media,” IEEE Trans. Magn., vol. 34, pp. 3786, 1998.ADSCrossRefGoogle Scholar
  18. 18.
    B. Lengsfield, IBM Research, San Jose, CA, private communication, 2000.Google Scholar
  19. 19.
    H. Zhou, H.N. Bertram, A.F. Torabi, and M.L. Mallary, “The effect of intergranular exchange on thermal energy barrier distributions in longitudinal media,” The 8th Joint MMM-Intermag Gonverence, San Antonio, TX, Jan. 7–11, 2001, paper EA-12 (IEEE Trans. Magn. (to be published)).Google Scholar
  20. 20.
    J. Fidler and T. Schrefl, “Micromagnetic modelling the current state of the art,” J. Phys. D, Appl. Phys., vol. 33, pp. R135, 2000.ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Ewing, “On time-lag in magnetization of iron,” Proc. Roy. Soc., vol. 46, pp. 269, 1889.CrossRefGoogle Scholar
  22. 22.
    R. Street and J.C. Woolley, “A study of magnetic viscosiy,” Proc. Phys. Soc., vol. A62, pp. 562, 1949.ADSCrossRefGoogle Scholar
  23. 23.
    P. Gaunt, “The frequency constant for thermal activation of a ferromagnetic domain wall,” J. Appl. Phys., vol. 78, pp. 3470, 1977.ADSCrossRefGoogle Scholar
  24. 24.
    W. Wernsdorfer, E.B. Orozco, K. Hasselbach, A. Benoit, B. Barbara, N. De-moncy, A. Loiseau, H. Pascard, and D. Mailly, “Experimental evidence of the neel brown model of magnetization reversal,” Phys. Rev. Lett., vol. 78, pp. 1791, 1997.ADSCrossRefGoogle Scholar
  25. 25.
    S. Chikazumi, Physics of Magnetism, chapter 15, John Wiley & Sons, Inc, New York, 1964.Google Scholar
  26. 26.
    D. Weiler and A. Moser, “Thermal effect limits in ultrahigh density magnetic recording,” IEEE Trans. Magn., vol. 35, pp. 4423, 1999.ADSCrossRefGoogle Scholar
  27. 27.
    M.P. Sharrock, “Time-dependent magnetic phenomena and particle-size effects in recording media,” IEEE Trans. Magn., vol. 26, pp. 193, 1990.ADSCrossRefGoogle Scholar
  28. 28.
    A. Moser and D. Weiler, “Thermal processes and stability of longitudinal magnetic recording media,” IEEE Trans. Magn., vol. 35, pp. 2808, 1999.ADSCrossRefGoogle Scholar
  29. 29.
    H.N. Bertram, Theory of Magnetic Recording, Cambridge University Press, U.K., 1994.CrossRefGoogle Scholar
  30. 30.
    A. Moser, D. Weiler, M.E. Best, and M.F. Doerner, “Dynamic coercivity measurements in thin film recording media using a contact write/read tester,” J. Appl. Phys., vol. 85, pp. 5018, 1999.ADSCrossRefGoogle Scholar
  31. 31.
    S.Y. Yamamoto and S. Schultz, “Scanning magnetoresistance microscopy,” Appl Phys. Lett., vol. 69, pp. 3263, 1996.ADSCrossRefGoogle Scholar
  32. 32.
    R. Indeck, P. Dhagat, A. Jander, and M. Muller, “Effect of trackwidth and linear spacing on stability and noise in longitudinal and perpendicular recording,” J. Magn. Soc. Japan, vol. 21 (S2), pp. 205, 1997.Google Scholar
  33. 33.
    A. Moser, D. Weiler, N.D. Rizzo, and T.J. Silva, “Determination of average demagnetizing fields in longitudinal magnetic recording using nanosecond field pulses,” Appl. Phys. Lett., vol. 77, pp. 1505, 2000.ADSCrossRefGoogle Scholar
  34. 34.
    N.D. Rizzo, T.J. Silva, and A.B. Kos, “Relaxation times for magnetization reversal in a high coercivity magnetic thin film,” Phys. Rev. Lett., vol. 83, pp. 4876, 1999.ADSCrossRefGoogle Scholar
  35. 35.
    T.J. Silva, CS. Lee, T.M. Crawford, and C.T. Rogers, “Inductive measurement of ultrafast magnetization dynamics in thin film permalloy,” J. Appl. Phys., vol. 85, pp. 7849, 1999.ADSCrossRefGoogle Scholar
  36. 36.
    A. Moser, D. Weiler, and M.F. Doerner, “Thermal stabihty of longitudinal magnetic recording media,” Appl. Phys. Lett., vol. 75, pp. 1604, 1999.ADSCrossRefGoogle Scholar
  37. 37.
    M. Yu, M.F. Doerner, and D.J. Sellmyer, “Thermal stability and nanostructure of cocrpt longitudinal recording media,” IEEE Trans. Magn., vol. 34, pp. 1534, 1998.ADSCrossRefGoogle Scholar
  38. 38.
    Y. Hosoe, I. Tamai, K. Tanahashi, Y. Takahashi, T. Yamamoto, T. Kanbe, and Y. Yajima, “Experimental study of thermal decay in high density magnetic recording media,” IEEE Trans. Magn., vol. 33, pp. 3028, 1997.ADSCrossRefGoogle Scholar
  39. 39.
    P. Dhagat, R.S. Indeck, and M.W. Muller, “Spin stand measurements of time and temperature dependence of magnetic recordings,” J. Appl Phys., vol. 85, pp. 4994, 1999.ADSCrossRefGoogle Scholar
  40. 40.
    H.J. Richter, and E.A. Brockie, “Precise measurement of the linear density dependence of thermal decay of squarewave recordings,” The 8th Joint MMM-Intermag Converence, San Antonio, TX, Jan. 7-11, 2001, paper EA-12 (IEEE Trans. Magn. (to be published)).Google Scholar
  41. 41.
    A. Moser et al, “Signal decay measurements in longitudinal recording media at drive temperatures.,” to be published.Google Scholar
  42. 42.
    L. He, W.D. Doyle, and H. Fujiwara, “High speed coherent switching below the stoner wohlfarth limit,” IEEE Trans. Magn., vol. 30, pp. 4086, 1994.ADSCrossRefGoogle Scholar
  43. 43.
    S.M. Stinnett, W.D. Doyle, P.J. Flanders, and C. Dawson, “High speed switching measurements in thin film disk media,” IEEE Trans. Magn., vol. 34, pp. 1828, 1998.ADSCrossRefGoogle Scholar
  44. 44.
    S.M. Stinnett, W.D. Doyle, O. Koshkina, and L. Zhang, “The relationship between high speed switching characteristics and the fluctuation field,” J. Appl. Phys., vol. 85, pp. 5009, 1999.ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Richter, S.Z. Wu, and R. Malmhall, “Dynamic coercivity effects in thin film media,” IEEE Trans. Magn., vol. 34, pp. 1540, 1998.ADSCrossRefGoogle Scholar
  46. 46.
    K. Rubin, J. Goldberg, H. Rosen, E. Marinero, M. Doerner, and M. Schabes, “Dynamic coercivity and thermal decay of magnetic media,” Mat. Res. Soc. Proc., vol. 517, pp. 261, 1998.CrossRefGoogle Scholar
  47. 47.
    H.N. Bertram, “Thermal dynamic reversal in thin films,” The 8th Joint MMM-Intermag Converence, San Antonio, TX, Jan. 7–11, 2001, paper EA-12 (IEEE Trans. Magn. (to be published)).Google Scholar
  48. 48.
    E.E. Fullerton, D.T. Margulies, M.E. Schabes, M. Garey, B. Gurney, A. Moser, M. Best, G. Zeltzer, K. Rubin, H. Rosen, and M.A. Doerner, “Antiferro-magnetically coupled magnetic media layers for thermally stable high density recording,” Appl. Phys. Lett., vol. 77, pp. 3806, 2000.ADSCrossRefGoogle Scholar
  49. 49.
    E.N. Abarra, A. Inomata, H. Sato, I. Okamoto, and Y. Mizoshita, “Longitudinal magnetic recording media with thermal stabilization layers,” Appl. Phys. Lett., vol. 77, pp. 2581, 2000.ADSCrossRefGoogle Scholar
  50. 50.
    E.E. Fullerton, D. Margulies, M. Schabes, and M.F. Doerner, “Antiferromagnetically coupled magnetic recording media,” The 8th Joint MMM-Intermag Converence, San Antonio, TX, Jan. 7–11, 2001, paper EA-12 (IEEE Trans. Magn. (to be published)).Google Scholar
  51. 51.
    J. Lohau, A. Moser, E.E. Fullerton, D. Margulies, and M. Schabes, “Dynamic coercivity measurements of antiferromagnetically-coupled magnetic media layers,” Appl. Phys. Lett., vol. 78, pp. 2748, 2001.ADSCrossRefGoogle Scholar
  52. 52.
    T.G. Arnoldussen, M. Mirzamaani, M. Doerner, K. Tang, X. Bian, J. Feng, and M. Gatherwright, “Correlation of thermal stability and signal to noise ratio of thin film recording media,” IEEE Trans. Magn., vol. 36, pp. 92, 2000.ADSCrossRefGoogle Scholar
  53. 53.
    H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, and K. Kojima, “New developments in laser assisted magnetic recording,” IEEE Trans. Magn., vol. 36, pp. 195, 2000.ADSCrossRefGoogle Scholar
  54. 54.
    D. Weiler, A. Moser, L. Folks, M.E. Best, Wen Lee, M.F. Toney, M. Schwickert, J.U. Thiele, and M.F. Doerner, “High Ku materials approach to 100 Gbits/in2,” IEEE Trans. Magn., vol. 36, pp. 10, 2000.ADSCrossRefGoogle Scholar
  55. 55.
    K. Takano, G. Zeltzer, D.K. Weiler, and E.E. Fullerton, “Co1−xCrx/Pt multilayers as perpendicular recording media,” J. Appl. Phys., vol. 87, pp. 6364, 2000.ADSCrossRefGoogle Scholar
  56. 56.
    M. Yu, Y. Liu, A. Moser, D. Weiler, and D.J. Sellmyer, “Nanocomposite CoPt:C films for extremely high density recording,” Appl. Phys. Lett., vol. 75, pp. 3992, 1999.ADSCrossRefGoogle Scholar
  57. 57.
    S. Sun, C.B. Murray, D. Weiler, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, pp. 1989, 2000.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andreas Moser
  • Dieter Weller

There are no affiliations available

Personalised recommendations