Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 41))

Abstract

Magnetic recording is literally as old as the hills. Recently a satellite, flying high over t he polar regions of Mars, detected st ripes of magnetisation spaced at more th an 50 miles. This is proof that Mars had a significant magnetic field and a liquid core in the distant past. In order to detect finer structures, the height of the orbit would have to be reduced. At fly heights, h, greater than one third of the plus to minus spacing of the stripes, S b , the field intensity from a periodic source falls as: B α e −πh/Sb This is known as the Wallace spacing loss formula. At this time the fly height in disk drives is about 25 nm. At this height the spacing loss factor is about 1/5 for a 50 nm bit space. This is approaching the minimum that a modern partial response maximum likelihood (PRML) channel detector can cope with, for a reasonable minimum signal to noise (SNR) requirement. The fly height in a disk drive is the key variable from which all th e others scale. Recently density has doubled each year. This has been achieved by scaling all of the salient system dimensions, including tolerances, down by 30% per year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Batra et al., Thin Film Read /Write Head for Minimising Erase Fringing and Method for Making the Same, US Pat. #5,267,112, 11/ 30/93; S. Batr, A. Torabi, M. Mallary, S. Ramaswamy, S. Marshall, Performance Eval. of Different Pole Geometries in Thin Film Heads, IEEE Trans Magn, Mag 30, 3876–3879 (1994)

    Article  ADS  Google Scholar 

  2. M. Mallary, Effective Field Gradient Dependence on Write Field Rise Time, IEEE Trans Magn. Mag 32, 3527 (1996)

    Article  ADS  Google Scholar 

  3. M. Mallary, Vertical Magnetic Recording Arra ngement, US Pat # 4,656,546, 4/7/87. Re #33,949 with S. Das, 6/2/92

    Google Scholar 

  4. M. Mallary, R. Beauregard, and A. Torabi, Switching Field Time Dependence of Thin Film Media, IEEE Trans Magri. Mag. 36, No. 5, 2477 (2001)

    Article  ADS  Google Scholar 

  5. M. Mallary, US Pat # 5,801,91O, Long Sat. Zone Magnetic Write Head, 9/1/ 98

    Google Scholar 

  6. C. Mao et al., J. Appl. Phys. 87, No.9, 5416 (5/ 1/ 00)

    Google Scholar 

  7. M. Mallary et al., Frequency Response of Thin Film Heads with Longitudin al and Tra nsverse Anisotropy, IEEE Trans. Mag. 26, (1990)

    Google Scholar 

  8. M. Mallary, A. Torabi, S. Batra, Three Dimension al Transmission Line Model for Flux Conduction in Thin Film Heads, J. Appl. Phys. 67 (9), 4863 (1990)

    Article  ADS  Google Scholar 

  9. M. Mallary and A. Smith, Conduction of Flux at High Frequencies by a Charge Free Magnetization Distribution, IEEE Trans. Mag. 24, 2374 (1988)

    Article  ADS  Google Scholar 

  10. M. Mallary, Conduction of Flux at High Frequencies in Permalloy Strips by Small-Angle Rotations, J. Appl. Phys. 57, 3952 (1985)

    Article  ADS  Google Scholar 

  11. J.C. Slonczewski et al., IEEE Trans. Mag. 24, No.3, 2045 (May 1988). For exchange energy corrections see Slonczewski and Middelhoek, Appl. Phys. Lett. 6, No.7, 139 (1965)

    Article  ADS  Google Scholar 

  12. J.C. Slonczewski, J. Appl. Phys. 37, 1268 (1966)

    Article  ADS  Google Scholar 

  13. N. Smith et al., J. Appl. Phys. 73, No. 10, 6013, Abstract (May 15, 1993)

    Article  ADS  Google Scholar 

  14. R. Arai et al., High Frequency Characterisitcs of Multi-layer CoTaZr Cores for Thin Film Heads, IEEE Trans. Mag. 28, No.5, 2115 (1992); S. Narumi et al., Abstract ES-01, Digests of the InterMag Conf., Stockholm, Sweden (April 1993)

    Article  ADS  Google Scholar 

  15. M. Mallary, US Pat# 5,089,334 and #5,085,935, Flux Spreading Thin Film Magn. Dev., 2/18/92

    Google Scholar 

  16. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, NY, 1966), p.525

    Google Scholar 

  17. R. S. Tebble and D. J. Craik, Magnetic Materials, (John Wiley & Sons, 1969), p.409

    Google Scholar 

  18. Mike Madison et al., J. Appl. Phys. 87, No.9, 4996 (5/1 /00) & HT-01, Intermag 2000 Digest

    Article  ADS  Google Scholar 

  19. H. Zhou, N. Bertram, A. Torabi, and M. MaUary, MMM 2001 Conference, (EA-12), January 2001

    Google Scholar 

  20. M. Mallary, Three Pole Magnetic Recording Head, US Pat# 4,907,113,3/6/90

    Google Scholar 

  21. R. Rottmayer and J.G. Zhu, IEEE Trans. Magn. 31, No.6, 2597 (1995)

    Article  ADS  Google Scholar 

  22. W. F. Egelhoff et al., J. Appl. Phys., 78, 243 (1995)

    Article  ADS  Google Scholar 

  23. S. S. P. Parkin, Z. G. Li, and J. Smith, Appl. Phys. Lett. 58, 2710 (1991)

    Article  ADS  Google Scholar 

  24. V.S. Spiriosu, et al., Spin Valves with Synthetic Ferrimagnets, Abstract AA-04, Intermag. Conf., 1996, Seatle Washington

    Google Scholar 

  25. K. Chahara, T. Ohnp, M. Kasai, and Y. Kozoono, Appl. Phys. Lett. 63, 1990 (1993)

    Article  ADS  Google Scholar 

  26. H. Kikuchi, M. Sato, K. Kobayashi, J. Appl. Phys. 87, No.9, 6055 (2000)

    Article  ADS  Google Scholar 

  27. R. Coehoorn et al., EEE Trans. Magn. 35, No.5, 2586 (1999)

    Article  ADS  Google Scholar 

  28. R. Wood, et al., IEEE Trans. Magn. 35, No.5, 2253 (1999); Abstract 23aA-1, Digest of the PMRC 2000, Sendai, Japan

    Article  ADS  Google Scholar 

  29. R. Victora et al., J. Appl. Phys. 87, No9, 6358 (2000); Abstract 25pA-2, Digest of th e PMRC 2000, Sendai, Japan

    Article  ADS  Google Scholar 

  30. N. Smith et al., IEEE Trans. Magn. 8, No5, 2292 (1992) is a DMR.

    Article  ADS  Google Scholar 

  31. M. Williams and L. Comstock, 17th Annu. AlP Conf. Proc., vol. 5, pp. 738–742

    Google Scholar 

  32. X. Xing and N. Bertram, IEEE Trans. Mag. 33, No5, 2959 (1997)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mallary, M. (2001). Recording Head Design. In: Plumer, M.L., van Ek, J., Weller, D. (eds) The Physics of Ultra-High-Density Magnetic Recording. Springer Series in Surface Sciences, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56657-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56657-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62686-9

  • Online ISBN: 978-3-642-56657-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics