Skip to main content

Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problems

  • Chapter
Generalized Convexity and Generalized Monotonicity

Abstract

In this paper, we propose a positive semidefinite relaxation for indefinite quadratic problems with box constraints. We show that a cutting plane procedure can be applied for generating tighter positive semidefinite relaxations. Computational results indicate that the relative gap obtained by the relaxations is less than 1% when the number of variables is up to 100. We also show a branch and bound procedure for obtaining an exact solution of the indefinite problems. Our branching scheme exploits the special structure of box constraints as well as the bounding procedure in which a pair of primal and dual solutions of the associated positive semidefinite relaxation is incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelis, P. L., Pardalos, P. M., AND Toraldo, G. Quadratic programming with box constraints. In Developments in Global Optimization, vol. 18 of Nonconvex Optimization and Its Applications. Kluwer Acad. Publ., Dordrecht, 1997, pp. 73–93.

    Google Scholar 

  2. Barahona, F., AND Mahjoub, A. R. On the cut polytope. Math. Programming 36, 2 (1986), 157–173.

    Article  Google Scholar 

  3. Benson, S., Ye, Y., AND Zhang, X. Solving large-scale sparse semidefinite programs for combinatorial optimization. Tech. rep., Technical report, Department of Management Sciences, The University of Iowa, 1997.

    Google Scholar 

  4. Boros, E., AND Hammer, P. L. Cut-polytopes, Boolean quadratic polytopes and nonnegative quadratic pseudo-Boolean functions. Math. Oper. Res. 18, 1 (1993), 245–253.

    Article  Google Scholar 

  5. Chung, S. J., AND Murty, K. G. Polynomially bounded ellipsoid algorithms for convex quadratic programming. In Nonlinear Programming, 4, O. L. Man-gasarian, R. R. Meyer, and S. M. Robinson, Eds. Academic Press, New York, 1981, pp. 439–485.

    Google Scholar 

  6. Coleman, T. F., AND Hulbert, L. A. A direct active set algorithm for large sparse quadratic programs with simple bounds. Math. Programming 45,3 (Ser. B) (1989), 373–406.

    Article  Google Scholar 

  7. Delorme, C., AND Poljak, S. Laplacian eigenvalues and the maximum cut problem. Math. Programming 62, 3, Ser. A (1993), 557–574.

    Article  Google Scholar 

  8. Deza, M. M., AND Laurent, M. Geometry of cuts and metrics, vol. 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  9. Fujie, T., AND Kojima, M. Semidefinite programming relaxation for noncon-vex quadratic programs. J. Global Optim. 10, 4 (1997), 367–380.

    Article  Google Scholar 

  10. Fujisawa, K., Kojima, M., AND Nakata, K. Sdpa (semi-definite programming algorithm) — user’s manual version 4.10. Dept. of Math, and Comp. Sci. B-308, Tokyo Institute of Technology, 1995.

    Google Scholar 

  11. Goemans, M. X. Semidefinite programming in combinatorial optimization. Math. Programming 79, 1–3, Ser. B (1997), 143–161.

    Google Scholar 

  12. Goemans, M. X., AND Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 6 (1995), 1115–1145.

    Article  Google Scholar 

  13. Han, C.-G., Pardalos, P. M., AND Ye, Y. Computational aspects of an interior point algorithm for quadratic programming problems with box constraints. In Large-scale numerical optimization, T. F. Coleman and Y. Li, Eds. SIAM, Philadelphia, PA, 1990, pp. 92–112.

    Google Scholar 

  14. Han, C.-G., Pardalos, P. M., AND Ye, Y. On the solution of indefinite quadratic problems using an interior-point algorithm. Informatica 3, 4 (1992), 474–496, 594, 602.

    Google Scholar 

  15. Hansen, P. Methods of nonlinear 0 — 1 programming. Ann. Discrete Math. 5 (1979), 53–70.

    Article  Google Scholar 

  16. Hansen, P., Jaumard, B., Ruiz, M., AND Xiong, J. Global minimization of indefinite quadratic functions subject to box constraints. Naval Res. Logist. 40, 3 (1993), 373–392.

    Article  Google Scholar 

  17. Helmberg, C., AND Rendl, F. A spectral bundle method for semidefinite programming. Tech. rep., Technical Report SC 97-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1997.

    Google Scholar 

  18. Helmberg, C., AND Rendl, F. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Programming 82, 3 (1998), 291–316.

    Article  Google Scholar 

  19. Nesterov, Y. E. Quality of semidefinite relaxation for nonconvex quadratic optimization. Tech. rep., CORE, Universite Catholique de Louvain, Belgium, 1997.

    Google Scholar 

  20. Padberg, M. The Boolean quadric polytope: some characteristics, facets and relatives. Math. Programming 45, 1 (Ser. B) (1989), 139–172.

    Article  Google Scholar 

  21. Pardalos, P. M., AND Rodgers, G. P. Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 2 (1990), 131–144.

    Article  Google Scholar 

  22. Pardalos, P. M., AND Wolkowicz, H., Eds. Topics in semidefinite and interior-point methods, vol. 18 of Fields Insitute Communications. Americam Mathematical Society, 1998.

    Google Scholar 

  23. Poljak, S., AND Rendl, F. Solving the max-cut problem using eigenvalues. Discrete Appl. Math. 62, 1–3 (1995), 249–278.

    Article  Google Scholar 

  24. Sherali, H. D., AND Tuncbilek, C. H. A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Global Optim. 7, 1 (1995), 1–31.

    Article  Google Scholar 

  25. Vavasis, S. A. Approximation algorithms for indefinite quadratic programming. Math. Programming 57, 2, Ser. B (1992), 279–311.

    Article  Google Scholar 

  26. Yajima, Y., AND Fujie, T. A polyhedral approach for nonconvex quadratic programming problems with box constraints. Dept. of Math. and Comp. Sci. B-323, Tokyo Institute of Technology, 1996.

    Google Scholar 

  27. Ye, Y. On affine scaling algorithms for nonconvex quadratic programming. Math. Programming 56, 3, Ser. A (1992), 285–300.

    Article  Google Scholar 

  28. Ye, Y. Approximating quadratic programming with quadratic constraints. Tech. rep., Department of Management Sciences The University of Iowa, 1997.

    Google Scholar 

  29. Ye, Y., AND Tse, E. An extension of Karmarkar’s projective algorithm for convex quadratic programming. Math. Programming 44, 2 (Ser. A) (1989), 157–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yajima, Y., Ramana, M.V., Pardalos, P.M. (2001). Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problems. In: Hadjisavvas, N., Martínez-Legaz, J.E., Penot, JP. (eds) Generalized Convexity and Generalized Monotonicity. Lecture Notes in Economics and Mathematical Systems, vol 502. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56645-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56645-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41806-1

  • Online ISBN: 978-3-642-56645-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics