Skip to main content

Convexity and Generalized Convexity Methods for the Study of Hamilton-Jacobi Equations

  • Chapter
Generalized Convexity and Generalized Monotonicity

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 502))

Abstract

We present a digest of recent results about the first-order HamiltonJacobi equation. We use explicit formulas of the Hopf and Lax-Oleinik types, stressing the role of quasiconvex duality: here the usual Fenchel conjugacy is replaced with quasiconvex conjugacies known from some years and the usual inf-convolution is replaced by the sublevel convolution. The role of the full theory of variational convergences (epi-convergence and sublevel convergence) is put in light for the verification of initial conditions. We observe that duality methods and variational convergences are not limited to the case of finite-valued functions as in the classical approaches to Hamilton-Jacobi equations. This extension allows to deal with problems arising from various cases, such as optimal control problems, attainability or obstacle problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Alvarez, E.N. Barron and H. Ishii, Hopf-Lax formulas for semicontinuous data, Indiana Univ. Math. J. 48(3) (1999), 993–1035.

    Article  Google Scholar 

  2. H. Attouch, Variational convergence for functions and operators, Pitman, Boston, (1984).

    Google Scholar 

  3. H. Attouch and H. Brézis, Duality for the sum of convex functions in general Banach spaces. In: Aspects of Mathematics and its applications, J.A. Barroso ed., North Holland, Amsterdam (1986), 125–133.

    Chapter  Google Scholar 

  4. M. Bardi and L.C. Evans, On Hopfs formulas for solutions of Hamilton-Jacobi equations, Nonlinear Anal. 8 (1984), 1373–1381.

    Article  Google Scholar 

  5. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Basel (1998).

    Google Scholar 

  6. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Math. et Appl. #17, Springer, Berlin (1994).

    Google Scholar 

  7. G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, Math. Modeling and Numer. Anal. 21 (1987), 557–579.

    Google Scholar 

  8. E.N. Barron, Viscosity solutions and analysis in L∞, in Nonlinear Analysis, Differential Equations and Control, F.H. Clarke and R.J. Stern (eds.), Kluwer, Dordrecht (1999), 1–60.

    Chapter  Google Scholar 

  9. E.N. Barron, R. Jensen, Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Diff. Eq. 15 (1990), 1713–1742.

    Article  Google Scholar 

  10. E.N. Barron, R. Jensen and W. Liu, Hopf-Lax formula for ut+ H(u,Du)=0, J. Differ. Eq. 126 (1996), 48–61.

    Article  Google Scholar 

  11. E.N. Barron, R. Jensen and W. Liu, Hopf-Lax formula for ut+ H(u,Du)=0. II, Comm. Partial Diff. Eq. 22 (1997), 1141–1160.

    Article  Google Scholar 

  12. E.N. Barron and W. Liu, Calculus of variations in L , Applied Math. Opt. 35 (1997), 237–243.

    Google Scholar 

  13. J.M. Borwein and Q.J. Zhu, Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity, SIAM J. Control Optim. 34 (1996), 1568–1591.

    Article  Google Scholar 

  14. J.M. Borwein and Q.J. Zhu, A survey of subdifferential calculus with applications, Nonlinear Anal. Th. Methods Appl. 38 (1999), 687–773.

    Article  Google Scholar 

  15. G. Buttazzo, Semicontinuity, relaxation and integral representations in the calculus of variations, Pitman 207, Longman, Harlow (1989).

    Google Scholar 

  16. F.H. Clarke, Yu.S. Ledyaev, Mean value inequalities, Proc. Amer. Math. Soc. 122 (1994), 1075–1083.

    Article  Google Scholar 

  17. F.H. Clarke, Yu.S. Ledyaev, Mean value inequalities in Hilbert space, Trans. Amer. Math. Soc. 344 (1994), 307–324.

    Article  Google Scholar 

  18. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth analysis and control theory, Springer, New York 1998.

    Google Scholar 

  19. M.G. Crandall, L.C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 27 (1992), 1–67.

    Google Scholar 

  20. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. 282 (1984)

    Google Scholar 

  21. M.G. Crandall and P.-L. Lions, Viscosity solutions to Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1–42.

    Article  Google Scholar 

  22. M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions, Part I, Uniqueness of viscosity solutions, J. Funct. Anal. 62 (1985), 379–396, Part II, Existence of viscosity solutions 65 (1986) 368–405; Part III 68 (19) 214–247; Part IV Unbounded linear terms 90 (1990), 237–283; Part V B-continuous solutions, 97 (1991), 417–465.

    Article  Google Scholar 

  23. J.-P. Crouzeix, Continuity and differentiability properties of quasiconvex functions on ℝn, in “Generalized concavity in optimization and economics”, S. Schaible and W.T. Ziemba, eds. Academic Press, New York, (1981), 109–130.

    Google Scholar 

  24. R. Deville, Smooth variational principles and nonsmooth analysis in Banach spaces, in Nonlinear Analysis, Differential Equations and Control, F.H. Clarke and R.J. Stern (eds.), Kluwer, Dordrecht, (1999), 369–405.

    Chapter  Google Scholar 

  25. E. El Haddad and R. Deville, The viscosity subdifferential of the sum of two functions in Banach spaces. I First order case, J. Convex Anal. 3 (1996), 295–308.

    Google Scholar 

  26. L.C. Evans, Some max-min methods for Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), 31–50.

    Article  Google Scholar 

  27. L.C. Evans, Partial differential equations, Graduate Studies in Math. #19, Amer. Math. Soc., Providence (1998).

    Google Scholar 

  28. H. Frankowska, Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation, Applied Math. Optim. 19 (1989), 291–311.

    Article  Google Scholar 

  29. H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 31(1) (1993), 257–272.

    Article  Google Scholar 

  30. E. Hopf, Generalized solutions to non linear equations of first order, J. Math. Mech. 14 (1965), 951–974.

    Google Scholar 

  31. C. Imbert, Convex analysis techniques for Hopf-Lax’ formulae in Hamilton-Jacobi equations with lower semicontinuous initial data, preprint, Univ. P. Sabatier, Toulouse, May 1999.

    Google Scholar 

  32. C. Imbert and M. Volle, First order Hamilton-Jacobi equations with completely convex data, preprint, October 1999.

    Google Scholar 

  33. A.D. Ioffe, Fuzzy principles and characterization of trustworthiness, Set-Valued Anal. 6 (1998), 265–276.

    Article  Google Scholar 

  34. R. Janin, On sensitivity in an optimal control problem, J. Math. Anal. Appl. 60 (1977), 631–657.

    Article  Google Scholar 

  35. S.N. Kružkov, On the minmax representation of solutions of first order nonlinear equations, Functional Anal. Appl. 2 (1969), 128–136.

    Article  Google Scholar 

  36. P.D. Lax, Hyperbolic systems of conservation laws II, Commun. Pure Appl. Math. 10 (1957), 537–566.

    Article  Google Scholar 

  37. P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Math. #69, Pitman, London (1982).

    Google Scholar 

  38. P.-L. Lions and C. Rochet, Hopf formula and multi-time Hamilton-Jacobi equations, Proc. Amer. Math. Soc. 90 (1980), 79–84.

    Google Scholar 

  39. P.-L. Lions and P.E. Souganidis, Differential games, optimal control and directional derivatives of viscosity solutions of Bellman’s and Isaac’s equations, SIAM J. Control and Optim. 23 (1985), 566–583.

    Article  Google Scholar 

  40. Ph. Loewen, Optimal Control via Nonsmooth Analysis, CRM Proceedings and Lecture Notes # 2, Amer. Math. Soc., Providence, 1993.

    Google Scholar 

  41. J.-E. Martinez-Legaz, On lower subdifferentiable functions, in “Trends in Mathematical Optimization”, K.H. Hoffmann et al. eds, Int. Series Numer. Math. 84 Birkhauser, Basel, 1988, 197–232.

    Chapter  Google Scholar 

  42. J.-E. Martinez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Optimization, 19 (1988) 603–652.

    Article  Google Scholar 

  43. J.-E. Martinez-Legaz and I. Singer, Dualities between complete lattices, Optim. 21 (1990), 481–508.

    Article  Google Scholar 

  44. J.-E. Martinez-Legaz and I. Singer, V-dualities and ⊥-dualities, Optim. 22 (1991), 483–511.

    Article  Google Scholar 

  45. J.-E. Martinez-Legaz and I. Singer, *-dualities, Optim. 30 (1994), 295–315.

    Article  Google Scholar 

  46. J.-P. Penot, Are generalized derivatives useful for generalized convex functions? in “Generalized Convexity, Generalized Monotonicity”, J.-P. Crouzeix, J-E. Martinez-Legaz and M. Volle (eds.) Kluwer, Dordrecht (1998), 3–60.

    Google Scholar 

  47. J.-P. Penot, Mean-value theorem with small subdifferentials, J. Opt. Th. Appl. 94(1) (1997), 209–221.

    Article  Google Scholar 

  48. J.-P. Penot, What is quasiconvex analysis? Optimization 47 (2000), 35–110.

    Article  Google Scholar 

  49. J.-P. Penot, Questions and observations about Hamilton-Jacobi equations, in preparation.

    Google Scholar 

  50. J.-P. Penot and M. Volle, Dualité de Fenchel et quasi-convexité, C.R. Acad. Sc. Paris série I, 304(13) (1987), 269–272.

    Google Scholar 

  51. J.-P. Penot and M. Volle, On quasi-convex duality, Math. Oper. Research 15(4) (1990), 597–625.

    Article  Google Scholar 

  52. J.-P. Penot and M. Volle, Another duality scheme for quasiconvex problems, in “Trends in Mathematical Optimization”, K.H. Hoffmann et al. eds, Int. Series Numer. Math. 84 Birkhauser, Basel, 1988, 259–275.

    Chapter  Google Scholar 

  53. J.-P. Penot and M. Volle, Hamilton-Jacobi equations under mild continuity and convexity assumptions, J. Nonlinear and Convex Anal. 1 (2000), 177–199.

    Google Scholar 

  54. J.-P. Penot and M. Volle, Duality methods for the study of Hamilton-Jacobi equations, preprint, December 1999.

    Google Scholar 

  55. J.-P. Penot and C. Zalinescu, Harmonic sum and duality, J. Convex Anal. 7(1) (2000), 95–113.

    Google Scholar 

  56. J.-P. Penot and C. Zalinescu, Elements of quasiconvex analysis, J. Convex Anal. 7(2) (2000),.

    Google Scholar 

  57. R.T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  58. P.E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Diff. Equations 56 (1985), 345–390.

    Article  Google Scholar 

  59. A.I. Subbotin, Generalized solutions of first-order PDE’s, Birkhäuser, Basel, 1995.

    Google Scholar 

  60. M. Volle, Convergence en niveaux et en épigraphes, C.R. Acad. Sci. Paris 299(8) (1984), 295–298.

    Google Scholar 

  61. M. Volle, Duality for the level sum of quasiconvex functions and applications, ESAIM: Control, Optimisation and Calculus of Variations, 3 (1998), 329–343, http://www.emath.fr/cocv/

    Article  Google Scholar 

  62. M. Volle, Conditions initiales quasiconvexes dans les équations de Hamilton-Jacobi, C.R. Acad. Sci. Paris serie I, 325 (1997), 167–170.

    Google Scholar 

  63. I. Zang and M. Avriel, On functions whose local minima are global, J. Optim. Th. Appl. 16 (1975), 183–190.

    Article  Google Scholar 

  64. I. Zang, E.V. Choo and M. Avriel, A note on functions whose local minima are global, J. Optim. Th. Appl. 18 (1976), 555–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Penot, JP., Volle, M. (2001). Convexity and Generalized Convexity Methods for the Study of Hamilton-Jacobi Equations. In: Hadjisavvas, N., Martínez-Legaz, J.E., Penot, JP. (eds) Generalized Convexity and Generalized Monotonicity. Lecture Notes in Economics and Mathematical Systems, vol 502. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56645-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56645-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41806-1

  • Online ISBN: 978-3-642-56645-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics