Skip to main content

Abstract

Many independent high-resolution simulations of structure formation in cold dark matter models show that galactic halos should have singular core profiles. This is in stark contrast with observations of both low- and high-surface brightness galaxies, which indicate that the dark matter has almost constant density in the central parts of halos. Basically there are three possible avenues to a solution to the problem, which we discuss in turn. Observations of halo profiles could be more uncertain than previously thought, and higher resolution observations could reveal that spirals do have a singular core feature. The highest resolution simulations do not include a baryonic component, and it is conceivable that violent star formation processes and similar phenomena can destroy the singular dark matter core and lead to an almost constant density core profile. Finally, we discuss in more detail the intriguing possibility that the discrepancy hints at some new exotic physics of the dark matter. Warm dark matter and self-interacting dark matter are two of the most promising candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Peacock, “Cosmological physics”, Cambridge University Press (1999)

    MATH  Google Scholar 

  2. See for instance M. Gross et al., Mon. Not. R. Astron. Soc. 301, 81 (1998).

    Article  ADS  Google Scholar 

  3. G. Efstathiou, W. J. Sutherland and S. J. Maddox, Nature 348, 705 (1990).

    Article  ADS  Google Scholar 

  4. M. Davis, F. J. Summers and D. Schlegel, Nature 359, 393 (1992).

    Article  ADS  Google Scholar 

  5. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).

    Article  ADS  Google Scholar 

  6. A. G Riess et al, Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  7. S. Perlmutter et al, Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  8. W. J. G. de Blok and S. S. McGaugh, Mon. Not. R. Astron. Soc. 290, 533 (1997).

    Article  ADS  Google Scholar 

  9. S. S. McGaugh and W. J. G. de Blok, Astrophys. J. 499, 41 (1998).

    Article  ADS  Google Scholar 

  10. T. E. Pickering et al., Astron. J. 114, 1858 (1997).

    Article  ADS  Google Scholar 

  11. P. Salucci and A. Burkert, Astrophys. J. Lett. 537, 9 (2000).

    Article  ADS  Google Scholar 

  12. A. Borriello and P. Salucci, astro-ph/0001082.

    Google Scholar 

  13. J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  14. R. Flores and J. R. Primack, Astrophys. J. Lett. 427, 1 (1994).

    Article  ADS  Google Scholar 

  15. J. F. Navarro, astro-ph/9807084 (1998).

    Google Scholar 

  16. J. F. Navarro and M. Steinmetz, astro-ph/9908114 (1999).

    Google Scholar 

  17. B. Moore et al., Mon. Not. R. Astron. Soc. 310, 1147 (1999).

    Article  ADS  Google Scholar 

  18. B. Moore et al., Astrophys. J. Lett. 524, 19 (1999).

    Article  ADS  Google Scholar 

  19. S. Ghigna et al, astro-ph/9910166 (1999).

    Google Scholar 

  20. F. C. van den Bosch and R. A. Swaters, astro-ph/0006048.

    Google Scholar 

  21. R. A. Swaters, B. F. Madore and M. Trewhella, Astrophys. J. Lett. 531, 107 (2000).

    Article  ADS  Google Scholar 

  22. J. S. Bullock, A. V. Kravtsov and D. H. Weinberg, astro-ph/0002214.

    Google Scholar 

  23. J. Binney, O. Gerhard and J. Silk, astro-ph/0003199.

    Google Scholar 

  24. M.-M. Mac Low and A. Ferrara, Astrophys. J. 513, 142 (1999).

    Article  ADS  Google Scholar 

  25. A. D’Ercole and F. Brighenti, Mon. Not. R. Astron. Soc. 309, 941 (1999).

    Article  ADS  Google Scholar 

  26. M. Kamionkowski and A. R. Liddle, Phys. Rev. Lett. 84, 4525 (2000).

    Article  ADS  Google Scholar 

  27. D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000).

    Article  ADS  Google Scholar 

  28. S. Hannestad, astro-ph/9912558

    Google Scholar 

  29. A. Burkert, Astrophys. J. Lett. 534, 143 (2000).

    Article  ADS  Google Scholar 

  30. C. Firmani et al., Mon. Not. R. Astron. Soc. 315, 29 (2000).

    Article  ADS  Google Scholar 

  31. N. Yoshida et al., Astrophys. J. Lett. 535, 103 (2000).

    Article  ADS  Google Scholar 

  32. B. Moore et al., astro-ph/0002308 Astrophys. J. Lett. 535, 21 (2000).

    Article  ADS  Google Scholar 

  33. J. P. Ostriker, astro-ph/9912548

    Google Scholar 

  34. J. Miralda-Escude, astro-ph/0002050

    Google Scholar 

  35. B. D. Wandelt et al., astro-ph/0006344

    Google Scholar 

  36. R. Davé et al., astro-ph/0006218

    Google Scholar 

  37. N. Yoshida et al., astro-ph/0006134

    Google Scholar 

  38. C. J. Hogan and J. J. Dalcanton, astro-ph/0002330.

    Google Scholar 

  39. J. J. Dalcanton and C. J. Hogan, astro-ph/0004381

    Google Scholar 

  40. J. Sommer-Larsen and A. Dolgov, astro-ph/9912166 (1999).

    Google Scholar 

  41. V. K. Narayanan, D. N. Spergel and R. Davé, astro-ph/0005095.

    Google Scholar 

  42. P. Colin, V. Avila-Reese and O. Valenzuela, astro-ph/0004115.

    Google Scholar 

  43. R. Schaefer and J. Silk, Astrophys. J. 332, 1 (1988).

    Article  ADS  Google Scholar 

  44. S. Colombi, S. Dodelson and L. M. Widrow, Astrophys. J. 458, 1 (1996).

    Article  ADS  Google Scholar 

  45. S. D. Bums, astro-ph/9711304.

    Google Scholar 

  46. J. Madsen, astro-ph/0006074.

    Google Scholar 

  47. S. Hannestad and R. J. Scherrer, Phys. Rev. D 62, 043522 (2000).

    Article  ADS  Google Scholar 

  48. E. D. Carlson, M. E. Machanek and L. J. Hall, Astrophys. J. 398, 43 (1992).

    Article  ADS  Google Scholar 

  49. M. E. Machacek, Astrophys. J. 431, 41 (1994).

    Article  ADS  Google Scholar 

  50. A. A. de Laix, R. J. Scherrer and R. K. Schaefer, Astrophys. J. 452, 495 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hannestad, S. (2001). Can Dark Matter See Itself?. In: Klapdor-Kleingrothaus, H.V. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56643-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56643-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62608-1

  • Online ISBN: 978-3-642-56643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics