Skip to main content

Plasminogen and Streptokinase

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 146))

Abstract

The primary structure of human plasminogen (HPg), diagrammed in Fig. 1, has been deduced from the nucleotide sequence of the cDNA (Forsgren et al. 1987) and genomic DNA (Petersen et al. 1990) that encode this protein, and has been directly determined by amino acid sequence analysis (Wiman 1973; Wiman and Wallen 1975; Wiman 1977; Sottrup-Jensen et al. 1978). HPg is synthesized as an 810-residue single polypeptide chain. A 19-residue leader peptide is excised during secretion, producing the mature form of HPg, which contains 791 amino acid residues (Forsgren et al. 1987).The only other known processing steps involved in production of plasma HPg are N- and O-linked glycosylation (Hayes and Castellino 1979a,b), and phosphorylation (Wang et al. 1997).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian GS, Korinek BW, Bowman GH, Yang F (1986) The human transferrin gene: 5’ region contains conserved sequences which match the control elements regulated by heavy metals, glucocorticoids and acute phase reaction. Gene 49:167–175

    PubMed  CAS  Google Scholar 

  • Agostoni A, Gardinali M, Frangi D, Cafaro C, Conciato L, Sponzilli C, Salvioni A, Cugno M, Cicardi M (1994) Activation of complement and kinin systems after thrombolytic therapy in patients with acute myocardial infarction. A comparison between streptokinase and recombinant tissue-type plasminogen activator. Circulation 90:2666–2670

    PubMed  CAS  Google Scholar 

  • Bajpai A, Baker JB (1985) Cryptic urokinase binding sites on human foreskin fibroblasts. Biochem Biophys Res Commun 133:475–482

    PubMed  CAS  Google Scholar 

  • Behnke D, Gerlach D (1987) Cloning and expression in Escherichia coli, Bacillus subtilis, and Streptococcus sanguis of a gene for staphylokinase-a bacterial plasminogen activator. Molec Gen Genet 210:528–534

    PubMed  CAS  Google Scholar 

  • Behrendt N, Rønne E, Ploug M, Petri T, Lober D, Nielsen LS, Schleuning W-D, Blasi F, Appella E, Danø K (1990) The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants. J Biol Chem 265:6453–6460

    PubMed  CAS  Google Scholar 

  • Berge A, Sjöbring U (1993) PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J Biol Chem 268:25417–25424

    PubMed  CAS  Google Scholar 

  • Berget SM (1984) Are U4 small nuclear ribonucleoproteins involved in polyadenylation? Nature 309:179–182

    PubMed  CAS  Google Scholar 

  • Binnema DJ, Dooijewaard G, van Iersel JJL, Turion PNC, Kluft C (1990) The contactsystem dependent plasminogen activator from human plasma: Identification and characterization. Thromb Haemostas 64:390–397

    CAS  Google Scholar 

  • Boyd D, Florent G, Kim P, Brattain M (1988) Determination of the levels of urokinase and its receptor in human colon carcinoma cell lines. Cancer Res 48:3112–3116

    PubMed  CAS  Google Scholar 

  • Brade V, Nicholson A, Bitter-Suermann D, Hadding V (1974) Formation of the C-3 cleaving properdin enzyme on zymosen. J Immunol 113:1735–1743

    PubMed  CAS  Google Scholar 

  • Brockway WJ, Castellino FJ (1972) Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch Biochem Biophys 151:194–199

    PubMed  CAS  Google Scholar 

  • Brockway WJ, Castellino FJ (1974) A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry 13:2063–2070

    PubMed  CAS  Google Scholar 

  • Bugge TH, Flick MJ, Daugherty CC, Degen JL (1995) Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 9:794–807

    PubMed  CAS  Google Scholar 

  • Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL (1996) Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 15:709–719

    Google Scholar 

  • Busso N, Masur SK, Lazega D, Waxman S, Ossowski L (1994) Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J Cell Biol 126:259–270

    PubMed  CAS  Google Scholar 

  • Cao R, Wu H-L, Veitonmaki N, Linden P, Farnebo J, Shi G-Y, Cao Y (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 96:5728–5733

    PubMed  CAS  Google Scholar 

  • Cao Y, Chen A, An SSA, Ji RW, Davidson D, Llinás M (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272:22924–22928

    PubMed  CAS  Google Scholar 

  • Cao YH, Ji RW, Davidson D, Schaller J, Marti D, Söhndel S, McCance SG, O’Reilly MS, Llinás M, Folkman J (1996) Kringle domains of human angiostatin. Characterization of the antiproliferative activity on endothelial cells. J Biol Chem 271:29461–29467

    PubMed  CAS  Google Scholar 

  • Casey JR, Petranka JG, Kottra J, Fleenor DE, Rosse WF (1994) The structure of the urokinase-type plasminogen activator receptor gene. Blood 84:1151–1156

    PubMed  CAS  Google Scholar 

  • Chaudhary A, Vasudha S, Rajagopal K, Komath SS, Garg N, Yadav M, Mande SC, Sahni G (1999) Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Protein Sci 8:2791–2805

    PubMed  CAS  Google Scholar 

  • Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91:917–925

    PubMed  CAS  Google Scholar 

  • Chibber BAK, Castellino FJ (1986) Regulation of the streptokinase-mediated activation of human plasminogen by fibrinogen and chloride ions. J Biol Chem 261:5289–5295

    PubMed  CAS  Google Scholar 

  • Chibber BAK, Morris JP, Castellino FJ (1985) Effects of human fibrinogen and its cleavage products on activation of human plasminogen by streptokinase. Biochemistry 24:3429–3434

    PubMed  CAS  Google Scholar 

  • Chibber BAK, Radek JT, Morris JP, Castellino FJ (1986) Rapid formation of an anion sensitive active site in stoichiometric complexes of streptokinase and human [Glu1]plasminogen. Proc Natl Acad Sci USA 83:1237–1241

    PubMed  CAS  Google Scholar 

  • Claesson-Welsh L, Welsh M, Ito N, Anand-Apte B, Soker S, Zetter B, O’Reilly M, Folkman J (1998) Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 95:5579–5583

    PubMed  CAS  Google Scholar 

  • Claeys H, Vermylen J (1974) Physicochemical and proenzyme properties of aminoterminal glutamic acid and amino-terminal lysine human plasminogen. Biochim Biophys Acta 342:351–359

    PubMed  CAS  Google Scholar 

  • Cochrane CG, Revak SD, Wuepper WG (1974) Activation of Hageman factor in solid and fluid phases. J Exp Med 138:1564–1583

    Google Scholar 

  • Collen D (1980) On the regulation and control of fibrinolysis. Thromb Haemostas 43:77–89

    CAS  Google Scholar 

  • Collen D, De Cock F, Vanlinhout I, Declerck PJ, Lijnen HR, Stassen JM (1992a) Comparative thrombolytic and immunogenic properties of staphylokinase and streptokinase. Fibrinolysis 6:232–242

    CAS  Google Scholar 

  • Collen D, Lijnen HR (1994) Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood 84:680–686

    PubMed  CAS  Google Scholar 

  • Collen D, Schlott B, Engelborghs Y, Van Hoef B, Hartmann M, Lijnen HR, Behnke D (1993) On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J Biol Chem 268:8284–8289

    PubMed  CAS  Google Scholar 

  • Collen D, Zhao ZA, Holvoet P, Marynen P (1992b) Primary structure and gene structure of staphylokinase. Fibrinolysis 6:226–231

    CAS  Google Scholar 

  • Colman RW (1980) Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun 35:273–279

    Google Scholar 

  • Davidson DJ, Higgins DL, Castellino FJ (1990) Plasminogen activator activities of equimolar complexes of streptokinase with variant recombinant plasminogens. Biochemistry 29:3585–3590

    PubMed  CAS  Google Scholar 

  • DíCosta SS, Boyle MDP (1998) Interaction of a group A Streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to occupancy of surface plasmin-binding structures. Microb Pathog 24:341–349

    Google Scholar 

  • Dawson KM, Marshall JM, Raper RH, Gilbert RJ, Ponting CP (1994) Substitution of arginine 719 for glutamic acid in human plasminogen substantially reduces its affinity for streptokinase Biochemistry 33:12042–12047

    PubMed  CAS  Google Scholar 

  • Dear AE, Medcalf RL (1998) The urokinase-type-plasminogen-activator receptor (CD87) is a pleiotropic molecule. Eur J Biochem 252:185–193

    PubMed  CAS  Google Scholar 

  • De Vries TJ, Quax PHA, Denijn M, Verheijen JH, Verspaget HW, Weidle UH, Ruiter DJ, Vanmuijen GNP, Verrijp KN (1994) Plasminogen activators, their inhibitors, and urokinase receptor emerge in late stages of melanocytic tumor progression. Am J Pathol 144:70–81

    PubMed  Google Scholar 

  • Dillon HC, Wannamaker LW (1965) Physical and immunological differences among streptokinases. J Exp Med 121:351–360

    PubMed  CAS  Google Scholar 

  • Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88:801–810

    PubMed  CAS  Google Scholar 

  • Drew AF, Kaufman AH, Kombrinck KW, Danton MJ, Daugherty CC, Degen JL, Bugge TH (1998) Ligneous conjunctivitis in plasminogen deficient mice. Blood 91:1616–1624

    PubMed  CAS  Google Scholar 

  • Dudani AK, Ganz PR (1996) Endothelial cell surface actin serves as a binding site for plasminogen, tissue plasminogen activator and lipoprotein(a). Br J Haematol 95:168–178

    PubMed  CAS  Google Scholar 

  • Duggan C, Maguire T, McDermott E, O’Higgins N, Fennelly JJ, Duffy MJ (1995) Urokinase plasminogen activator and urokinase plasminogen activator receptor in breast cancer. Int J Cancer 61:597–600

    PubMed  CAS  Google Scholar 

  • Dumler I, Petri T, Schleuning W-D (1993) Interaction of urokinase-type plasminogen activator (u-PA) with its cellular receptor (u-PAR) induces phosphorylation on tyrosine of a 38kDa protein. FEBS Lett 322:37–40

    PubMed  CAS  Google Scholar 

  • Dumler I, Petri T, Schleuning W-D (1994) Induction of c-fos gene expression by urokinase-type plasminogen activator in human ovarian cancer cells. FEBS Lett 343:103–106

    PubMed  CAS  Google Scholar 

  • Edmonds-Alt X, Quisquater E, Vaes G (1980) Proteoglycan-and fibrin-degrading neutral proteinase activities of Lewis lung carcinoma cells. Eur J Cancer 16:1257–1261

    Google Scholar 

  • Ellis V, Behrendt N, Danø K (1991) Plasminogen activation by receptor-bound urokinase. Kinetic study with both cell-associated and isolated receptor. J Biol Chem 266:12572–12578.

    Google Scholar 

  • Ellis V, Scully MF, Kakkar VV (1987) Plasminogen activation by single-chain urokinase in functional isolation. J Biol Chem 262:14998–15003

    PubMed  CAS  Google Scholar 

  • Ellis V, Wun T-C, Behrendt N, Rønne E, Danø K (1990) Inhibition of receptorbound urokinase by plasminogen activator inhibitors. J Biol Chem 265:9904–9908

    PubMed  CAS  Google Scholar 

  • Fazioli F, Blasi F (1994) Urokinase-type plasminogen activator and its receptor. New targets for anti-metastatic therapy. Trends Pharmacol Sci 15:25–29

    PubMed  CAS  Google Scholar 

  • Fay WP, Bokka LV (1998) Functional analysis of the amino-and carboxyl-termini of streptokinase. Thromb Haemost 79:985–991

    PubMed  CAS  Google Scholar 

  • Federici AB, Berkowitz SD, Lattuada A, Mannucci PM (1993) Degradation of von Willebrand factor in patients with acquired clinical conditions in which there is heightened proteolysis. Blood 81:720–725

    PubMed  CAS  Google Scholar 

  • Forsgren M, Raden B, Israelsson M, Larsson K, Hedén L-O (1987) Molecular cloning and characterization of a full-length cDNA clone for human plasminogen. FEBS Lett 213:254–260

    PubMed  CAS  Google Scholar 

  • Fowlkes DM, Mullis MT, Comeau CM, Crabtree GR (1984) Potential basis for regulation of the coordinately expressed fibrinogen genes: homology in the 5’ flanking regions. Proc Natl Acad Sci USA 81:2313–2316

    PubMed  CAS  Google Scholar 

  • Frank C, Steiner K, Malke H (1995) Conservation of the organization of the streptokinase gene region among pathogenic streptococci. Med Microbiol Immunol 184:139–146

    PubMed  CAS  Google Scholar 

  • Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 94:10868–10872

    PubMed  CAS  Google Scholar 

  • Gerlach D, Kohler W (1977) Studies of the heterogeneity of streptokinase of different origin. Zbl Bakt Hyg I Abt Orig 238:336–349

    CAS  Google Scholar 

  • Goldfinger LE, Stack MS, Jones JC (1998) Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol 141:255–265

    PubMed  CAS  Google Scholar 

  • Goldsmith GH, Saito H, Ratnoff OD (1978) The activation of plasminogen by Hageman factor (factor XII) and Hageman factor fragments. J Clin Invest 62:54–60

    PubMed  CAS  Google Scholar 

  • Gonzalez-Gronow M, Violand BN, Castellino FJ (1977) Purification and some properties of the glu-and lys-human plasmin heavy chains. J Biol Chem 252:2175–2177

    PubMed  CAS  Google Scholar 

  • Grella DK, Castellino FJ (1997) Activation of human plasminogen by staphylokinase. Direct evidence that preformed plasmin is necessary for activation to occur. Blood 89:1585–1589

    PubMed  CAS  Google Scholar 

  • Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, Opolon P, Soria C, Perricaudet M, Yeh P, Lu H (1998) Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 95:6367–6372

    PubMed  CAS  Google Scholar 

  • Gross JL, Moscatelli D, Rifkin DB (1983) Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci USA 80:2623–2627

    PubMed  CAS  Google Scholar 

  • Gundersen D, Tran-Thang C, Sordat B, Mourali F, Ruegg C (1997) Plasmin-induced proteolysis of tenascin-C. Modulation by T lymphocyte-derived urokinase-type plasminogen activator and effect on T lymphocyte adhesion, activation, and cell clustering. J Immunol 158:1051–1060

    PubMed  CAS  Google Scholar 

  • Habal FM, Burrowes CE, Movat HZ (1976) Generation of kinin by plasma kallikrein and plasmin and the effect of α1-antitrypsin and antithrombin III on the kininogenases. Adv Exp Med Biol 70:23–36

    PubMed  CAS  Google Scholar 

  • Hajjar KA, Krishnan S (1999) Annexin II: a mediator of the plasmin/plasminogen activator system. Trends Cardiovasc Med 9:128–138

    PubMed  CAS  Google Scholar 

  • Hajjar KA, Harpel PC, Jaffe EA, Nachman RL (1986) Binding of plasminogen to cultured human endothelial cells. J Biol Chem 261:11656–11662

    PubMed  CAS  Google Scholar 

  • Hauert J, Nicoloso G, Schleuning WD, Bachmann F, Schapira M (1989) Plasminogen activators in dextran sulfate-activated euglobulin fractions: a molecular analysis of factor XII-and prekallikrein-dependent fibrinolysis. Blood 73:994–999

    PubMed  CAS  Google Scholar 

  • Hayes ML, Castellino FJ (1979a) Carbohydrate of human plasminogen variants. II. Structure of the asparagine-linked oligosaccharide unit. J Biol Chem 254:8772–8776

    PubMed  CAS  Google Scholar 

  • Hayes ML, Castellino FJ (1979b) Carbohydrate of human plasminogen variants. III. Structure of the O-glycosidically-linked oligosaccharide unit. J Biol Chem 254:8777–8780

    PubMed  CAS  Google Scholar 

  • He C, Wilhelm SM, Pentland AP, Marmer BL, Grant GA, Eisen AZ, Goldberg GI (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 86:2632–2636

    PubMed  CAS  Google Scholar 

  • Hearing V, Law L, Corti A, Appella E, Blasi F (1988) Modulation of metastatic potential by surface urokinase of murine melanoma cells. Cancer Res 48:1270–1278

    PubMed  CAS  Google Scholar 

  • Hembrough TA, Li L, Gonias SL (1996) Cell-surface cytokeratin 8 is the major plasminogen receptor on breast cancer cells and is required for the accelerated activation of cell-associated plasminogen by tissue-type plasminogen activator. J Biol Chem 271:25684–25691

    PubMed  CAS  Google Scholar 

  • Hembrough TA, Vasudevan J, Allietta MM, Glass WF, Gonias SL (1995) A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci 108:1071–1082

    PubMed  CAS  Google Scholar 

  • Hoover GJ, Menhart N, Martin A, Warder S, Castellino FJ (1993) Amino acids of the recombinant kringle 1 domain of human plasminogen that stabilize its interaction with ω-amino acids. Biochemistry 32:10936–10943

    PubMed  CAS  Google Scholar 

  • Horrevoets AJG, Smilde AE, Fredenburgh JC, Pannekoek H, Nesheim ME (1995) The activation-resistant conformation of recombinant human plasminogen is stabilized by basic residues in the amino-terminal hinge region. J Biol Chem 270:15770–15776

    PubMed  CAS  Google Scholar 

  • Hortin GL (1990) Isolation of glycopeptides containing O-linked oligosaccharides by lectin affinity chromatography on jacalin-agarose. Anal Biochem 191:262–267

    PubMed  CAS  Google Scholar 

  • Hortin GL, Trimpe BL, Fok KF (1989) Plasmin’s peptide-binding specificity: Characterization of ligand sites in α2-antiplasmin. Thromb Res 54:621–632

    PubMed  CAS  Google Scholar 

  • Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem 257:2912–2919

    PubMed  CAS  Google Scholar 

  • Huang T-T, Malke H, Ferretti JJ (1989) The streptokinase gene of group A streptococci: cloning, expression in Escherichia coli, and sequence analysis. Mol Microbiology 3:197–205

    CAS  Google Scholar 

  • Ichinose A, Fujikawa K, Suyama T (1986) The activation of pro-urokinase by plasma kallikrein and its activation by thrombin. J Biol Chem 261:3486–3489

    PubMed  CAS  Google Scholar 

  • Jackson KW, Tang J (1982) Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21:6620–6625

    PubMed  CAS  Google Scholar 

  • Janeway CA, Merler E, Rosen FS, Salmon S, Crain JO (1968) Intravenous gamma-globulin: Mechanism of gamma-globulin fragments in normal and agamma-globulinemic persons. New Eng J Med 278:919–923

    PubMed  CAS  Google Scholar 

  • Jespers L, VanHerzeele N, Lijnen HR, VanHoef B, DeMaeyer M, Collen D, Lasters I (1998) Arginine 719 in human plasminogen mediates formation of the staphylokinase: plasmin activator complex. Biochemistry 37:6380–6386

    PubMed  CAS  Google Scholar 

  • Ji WR, Barrientos LG, Llinás M, Gray H, Villarreal X, Deford ME, Castellino FJ, Kramer RA, Trail PA (1998) Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem Biophys Res Commun 247:414–419

    PubMed  CAS  Google Scholar 

  • Jilek F (1977) Cold-insoluble globulin III. Cyanogen bromide and plasminolysis fragments containing a label introduced by transamidation. Hoppe-Seyler’s Z Physiol Chem 358:1165–1168

    PubMed  CAS  Google Scholar 

  • Kao WW, Kao CW, Kaufman AH, Kombrinck KW, Converse RL, Good WV, Bugge TH, Degen JL (1998) Healing of corneal epithelial defects in plasminogen-and fibrinogen-deficient mice. Invest Ophthalmol Vis Sci 39:502–508

    PubMed  CAS  Google Scholar 

  • Kida M, Wakabayashi S, Ichinose A (1997) Expression and induction by IL-6 of the normal and variant genes for human plasminogen. Biochem Biophys Res Commun 230:129–132

    PubMed  CAS  Google Scholar 

  • Kitching AR, Holdsworth SR, Ploplis VA, Plow EF, Collen D, Carmeliet P, Tipping PG (1997) Plasminogen and plasminogen activators protect against renal injury in crescentic glomerularnephritis J Exp Med 185:963–968

    PubMed  CAS  Google Scholar 

  • Kluft C, Wijngaards G, Jie AFH (1981) The factor XII-independent plasminogen proactivator system includes urokinase-related activators. Thromb Haemostas 46:343–350

    Google Scholar 

  • Kowalska-Loth B, Zakrzewski K (1975) The activation by staphylokinase of human plasminogen. Acta Biochim Pol 22:327–339

    PubMed  CAS  Google Scholar 

  • Kruithof EKO, Ransijn A, Bachmann F (1983) Inhibition of tissue plasminogen activator by human plasma. In: Davidson JF, Bachmann F, Bouvier CA, Kruithof EKO (eds) Progress in Fibrinolysis, vol 6. Churchill Livingstone, Edinburgh, pp 362–366

    Google Scholar 

  • Lazarus GS, Jensen PJ (1991) Plasminogen activators in epithelial biology. Sem Thromb Haemostas 17:210–216

    CAS  Google Scholar 

  • Lee TH, Rhim TY, Kim SS (1998) Prothrombin kringle-2 has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J Biol Chem 273:28805–28812

    PubMed  CAS  Google Scholar 

  • Lijnen HR, Carmeliet P, Bouche A, Moons L, Ploplis VA, Plow EF, Collen D (1996) Restoration of thrombolytic potential in plasminogen-deficient mice after bolus administration of plasminogen. Blood 88:870–876

    PubMed  CAS  Google Scholar 

  • Lijnen HR, De Cook F, Van Hoef B, Schlott B, Collen D (1994) Characterization of the interaction between plasminogen and staphylokinase. Eur J Biochem 224:143–149

    PubMed  CAS  Google Scholar 

  • Lijnen HR, Ugwu F, Bini A, Collen D (1998) Generation of an angiostatin-like fragment from plasminogen by stromelysin-1 (MMP-3). Biochemistry 37:4699–4702

    PubMed  CAS  Google Scholar 

  • Lijnen HR, Van Hoef B, Nelles L, Collen D (1990) Plasminogen activation with singlechain urokinase-type plasminogen activator (scu-PA). Studies with active site mutagenized plasminogen (Ser740 → Ala) and plasmin-resistant scu-PA (Lys158 → Glu). J Biol Chem 265:5232–5236

    PubMed  CAS  Google Scholar 

  • Linde V, Nielsen LS, Foster DC, Petersen LC (1998) Elimination of the Cys558-Cys566 bond in Lys78-plasminogen. Effect on activation and fibrin interaction. Eur J Biochem 251:472–479

    PubMed  CAS  Google Scholar 

  • Long GL, Chandra T, Woo SLC, Davie EW, Kurachi K (1984) Complete sequence of the cDNA for human α1-antitrypsin and the gene for the S variant. Biochemistry 23:4828–4837

    PubMed  CAS  Google Scholar 

  • Mackay AR, Corbitt RH, Hartzler JL, Thorgeirsson UP (1990) Basement membrane type IV collagen degradation: Evidence for the involvement of a proteolytic cascade independent of metalloproteinases. Cancer Res 50:5997–6001

    PubMed  CAS  Google Scholar 

  • Maeda M (1985) Nucleotide sequence of the haptoglobin and haptoglobin-related gene pair. J Biol Chem 260:6698–6709

    PubMed  CAS  Google Scholar 

  • Magnusson S, Petersen TE, Sottrup-Jensen L, Claeys H (1975) Complete primary structure of prothrombin: Isolation and reactivity of ten carboxylated glutamic residues and regulation of prothrombin activation by thrombin. In: Reich E, Rifkin DB, Shaw E (eds) Proteases and biological control. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, pp 123–149

    Google Scholar 

  • Malke H, Ferretti JJ (1984) Streptokinase: cloning, expression, and excretion by Escherichia coli. Proc Natl Acad Sci USA 81:3557–3561

    PubMed  CAS  Google Scholar 

  • Malke H, Roe B, Ferretti JJ (1985) Nucleotide sequence of the streptokinase gene from Streptococcus equisimilis H46A. Gene 34:357–362

    PubMed  CAS  Google Scholar 

  • Mandle RJ, Kaplan AP (1979) Generation of fibrinolytic activity by the interaction of activated factor XI and plasminogen. Blood 54:850–861

    PubMed  CAS  Google Scholar 

  • Marti DN, Schaller J, Llinás M (1999) Solution structure and dynamics of the plasminogen kringle 2-AMCHA complex: 31-helix in homologous domains. Biochemistry 38:15741–15755

    PubMed  CAS  Google Scholar 

  • Mathews II, Vanderhoff-Hanaver P, Castellino FJ, Tulinsky A (1996) Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands ε-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Biochemistry 35:2567–2576

    PubMed  CAS  Google Scholar 

  • McCance SG, Castellino FJ (1995) Contributions of individual kringle domains toward maintenance of the chloride-induced tight conformation of human glutamic acid-1 plasminogen. Biochemistry 34:9581–9586

    PubMed  CAS  Google Scholar 

  • McCance SG, Menhart N, Castellino FJ (1994) Amino acid residues of the kringle-4 and kringle-5 domains of human plasminogen that stabilize their interactions with omega-amino acid ligands. J Biol Chem 269:32405–32410

    PubMed  CAS  Google Scholar 

  • McCoy HE, Border CC, Lottenberg R (1991) Streptokinases produced by pathological group C Streptococci demonstrate species-specific plasminogen activation. J Inf Dis 164:515–521

    CAS  Google Scholar 

  • McKee PA, Lemmon WB, Hampton JW (1971) Streptokinase and urokinase activation of human chimpanzee and baboon plasminogen. Thromb Diath Haemorrh 26:512–522

    PubMed  CAS  Google Scholar 

  • McLauchlan J, Gaffney D, Whitton JL, Clements JB (1985) The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3’ termini. Nucleic Acids Res 13:1347–1368

    PubMed  CAS  Google Scholar 

  • McLean JW, Tomlinson JE, Kuang W-J, Eaton DL, Chen EY, Gless GM, Scanu AM, Lawn RM (1987) cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330:132–137

    PubMed  CAS  Google Scholar 

  • McMullen BA, Fujikawa K (1985) Amino acid sequence of the heavy chain of human α-factor Xlla (activated Hageman factor). J Biol Chem 260:5328–5341

    PubMed  CAS  Google Scholar 

  • Menhart N, Hoover GJ, McCance SG, Castellino FJ (1995) Roles of individual kringle domains in the functioning of positive and negative effectors of human plasminogen activation. Biochemistry 34:1482–1488

    PubMed  CAS  Google Scholar 

  • Menhart N, McCance SG, Sehl LC, Castellino FJ (1993) Functional independence of the kringle 4 and kringle 5 regions of human plasminogen. Biochemistry 32:8799–8806

    PubMed  CAS  Google Scholar 

  • Menhart N, Sehl LC, Kelley RF, Castellino FJ (1991) Construction, expression and purification of recombinant kringle 1 of human plasminogen and analysis of its interaction with ω-amino acids. Biochemistry 30:1948–1957

    PubMed  CAS  Google Scholar 

  • Meroni G, Buraggi G, Mantovani R, Taramelli R (1996) Motifs resembling hepatocyte nuclear factor 1 and activator protein 3 mediate the tissue specificity of the human plasminogen gene. Eur J Biochem 236:373–382

    PubMed  CAS  Google Scholar 

  • Miles LA, Dahlberg CM, Plow EF (1988) The cell binding domains of plasminogen and their function in plasma. J Biol Chem 263:11928–11934

    PubMed  CAS  Google Scholar 

  • Miles LA, Plow EF (1987) Receptor mediated binding of the fibrinolytic components, plasminogen and urokinase to peripheral blood cells. Thromb Haemostas 58:936–942

    CAS  Google Scholar 

  • Miles LA, Plow EF (1988) Plasminogen receptors: ubiquitous sites for cellular regulation of fibrinolysis. Fibrinolysis 2:61–71

    CAS  Google Scholar 

  • Minger AM, Heimburger N, Zeitler P, Kreth HW, Schuster V (1997) Homozygous type I plasminogen deficiency. Semin Thromb Hemost 23:259–269

    Google Scholar 

  • Mirsky IA, Perisutti G, Davis NC (1959) The destruction of glucagon, adrenocorticotropin and somatotropin by human blood plasma. J Clin Invest 38:14–20

    PubMed  CAS  Google Scholar 

  • Moons L, Shi C, Ploplis V, Plow E, Haber E, Collen D, Carmeliet P (1998) Reduced transplant arteriosclerosis in plasminogen deficient mice. J Clin Invest 102:1788–1797

    PubMed  CAS  Google Scholar 

  • Morioka S, Lazarus GS, Baird JL, Jensen PJ (1991) Migrating keratinocytes express urokinase-type plasminogen activator. J Invest Dermatol 88:418–423

    Google Scholar 

  • Murray JC, Buetow KH, Donovan M, Hornung S, Motulsky AG, Disteche C, Dyer K, Swisshelm K, Anderson J, Giblet E, Sadler E, Eddy R, Shows TB (1987) Linkage disequilibrium of plasminogen polymorphisms and assignment of the gene to human chromosome 6q26–6q27. Am J Hum Genet 40:338–350

    PubMed  CAS  Google Scholar 

  • Nakajima K, Hamanoue M, Takemoto N, Hattori T, Kato K, Kohsaka S (1994) Plasminogen binds specifically to α-enolase on rat neuronal plasma membrane. J Neurochem 63:2048–2057

    PubMed  CAS  Google Scholar 

  • Nielsen LS, Kellerman GM, Behrendt N, Picone R, Danø K, Blasi F (1988) A 55000–65000 Mr receptor for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J Biol Chem 263:2358–2363

    PubMed  CAS  Google Scholar 

  • Nihalani D, Kumar R, Rajagopal K, Sahni G (1998) Role of the amino-terminal region of streptokinase in the generation of a fully functional plasminogen activator complex probed with synthetic peptides. Protein Sci 7:637–648

    PubMed  CAS  Google Scholar 

  • Nowicki ST, Minningwenz D, Johnston KH, Lottenberg R (1994) Characterization of a novel streptokinase produced by Streptococcus equisimilis of non-human origin. Thromb Haemostas 72:595–603

    CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Sing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates suppression of metastasis by a Lewis lung carcinoma. Cell 79:315–328

    PubMed  Google Scholar 

  • Ogston D, Ogston DM, Ratnoff OD, Forbes CD (1969) Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors. J Clin Invest 48:1786–1801

    PubMed  CAS  Google Scholar 

  • Ohkura N, Hagihara Y, Yoshimura T, Goto Y, Kato H (1998) Plasmin can reduce the function of human β2 glycoprotein I by cleaving domain V into a nicked form. Blood 91:4173–4179

    PubMed  CAS  Google Scholar 

  • Omar MN, Mann KG (1987) Inactivation of factor Va by plasmin. J Biol Chem 262:9750–9755

    PubMed  CAS  Google Scholar 

  • Ossowski L, Biegel D, Reich E (1979) Mammary plasminogen activator: Correlation with involution hormonal modulation and comparison between normal and neoplastic tissue. Cell 16:929–940

    PubMed  CAS  Google Scholar 

  • Pancholi V, Fischetti VA (1998) α-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515

    PubMed  CAS  Google Scholar 

  • Pannell R, Gurewich V (1987) The activation of plasminogen by single-chain urokinase or by two-chain urokinase-a demonstration that single-chain urokinase has a low catalytic activity (pro-urokinase). Blood 67:22

    Google Scholar 

  • Parrado J, Conejero-Lara F, Smith RAG, Marshall JM, Ponting CP, Dobson CM (1996) The domain organization of streptokinase: Nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci 5:693–704

    PubMed  CAS  Google Scholar 

  • Patterson BC, Sang QA (1997) Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 272:28823–28825

    PubMed  CAS  Google Scholar 

  • Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV, Collen D (1983) Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301:214–221

    PubMed  CAS  Google Scholar 

  • Petersen LC, Lund LR, Nielsen LS, Danø K, Skriver L (1988) One-chain urokinasetype plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 263:11189–11195

    PubMed  CAS  Google Scholar 

  • Petersen TE, Martzen MR, Ichinose A, Davie EW (1990) Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem 265:6104–6111

    PubMed  CAS  Google Scholar 

  • Pizzo SV, Schwartz ML, Hill RL, McKee PA (1972) The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem 247:636–645

    PubMed  CAS  Google Scholar 

  • Ploplis VA, Carmeliet P, Vazirzadeh S, Van Vlaenderen I, Moons L, Plow EF, Collen D (1995) Effects of disruption of the plasminogen gene on thrombosis, growth and health in mice. Circulation 92:2585–2593

    PubMed  CAS  Google Scholar 

  • Ploplis VA, French EL, Carmeliet P, Collen D, Plow EF (1998) Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 91:2005–2009

    PubMed  CAS  Google Scholar 

  • Plow EF, Freany F, Plescia J, Miles LA (1986) The plasminogen system and cell surfaces: Evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol 103:2411–2430

    PubMed  CAS  Google Scholar 

  • Powell JR, Castellino FJ (1980) Activation of neo-plasminogen-Val442 by urokinase and streptokinase and a kinetic characterization of neo-plasmin-Val442. J Biol Chem 255:5329–5335

    PubMed  CAS  Google Scholar 

  • Pirie-Shepherd SR, Stevens RD, Andol NL, Enghild JJ, Pizzo SV (1997) Evidence for a novel O-linked sialylated trisaccharide on Ser-248 of human plasminogen 2. J Biol Chem 272:7408–7411

    PubMed  CAS  Google Scholar 

  • Redlitz A, Fowler BJ, Plow EF, Miles LA (1995) The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227:407–415

    PubMed  CAS  Google Scholar 

  • Reed GL, Lin L-F, Parhami-Seren B, Kussie P (1995) Identification of a plasminogenbinding region in streptokinase that is necessary for creation of a functional streptokinase-plasminogen complex. Biochemistry 34:10266–10271

    PubMed  CAS  Google Scholar 

  • Reich R, Miskin R, Tsafriri A (1985) Follicular plasminogen activator: Involvement in ovulation. Endocrinology 116:516–521

    PubMed  CAS  Google Scholar 

  • Rijken DC, Wijngaards G, Welbergen J (1980) Relationship between tissue plasminogen activator and activators in blood and vessel wall. Thromb Res 18:815–830

    PubMed  CAS  Google Scholar 

  • Robbins KC, Summaria L, Hsieh B, Shah RJ (1967) The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 242:2333–2342

    PubMed  CAS  Google Scholar 

  • Rodríguez P, Collen D, Lijnen HR (1995) Binding of streptokinase and staphylokinase to plasminogen. Fibrinolysis 9:298–303

    Google Scholar 

  • Rodríguez P, Fuentes D, Muñoz E, Rivero D, Orta D, Alburquerque S, Perez S, Besada V, Herrera L (1994) The streptokinase domain responsible for plasminogen binding. Fibrinolysis 8:276–285

    Google Scholar 

  • Rodríguez P, Fuentes P, Barro M, Alvarez JG, Muñoz E, Collen D, Lijnen HR (1995) Structural domains of streptokinase involved in the interaction with plasminogen. Eur J Biochem 229:83–90

    PubMed  Google Scholar 

  • Rømer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Danø K (1996) Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 2:287–292

    PubMed  Google Scholar 

  • Sakai M, Watanuki M, Matsuo O (1989) Mechanism of fibrin-specific fibrinolysis by staphylokinase: Participation of α2-plasmin inhibitor. Biochem Biophys Res Commun 162:830–837

    PubMed  CAS  Google Scholar 

  • Sako T (1985) Overproduction of staphylokinase in Escherichia coli and its characterization. Eur J Biochem 149:557–563

    PubMed  CAS  Google Scholar 

  • Sako T, Sawaki S, Sakurai T, Ito S, Yoshizawa Y, Kondo I (1983) Cloning and expression of the staphylokinase gene of Staphylococcus aureus in E. coli. Molec Gen Genet 190:271–277

    PubMed  CAS  Google Scholar 

  • Sako T, Tsuchida N (1983) Nucleotide sequence of the staphylokinase gene from Staphylococcus aureus. Nucleic Acids Res 11:7679–7693

    PubMed  CAS  Google Scholar 

  • Sappino AP, Huarte J, Belin D, Vassalli J-D (1989) Plasminogen activators in tissue remodeling and invasion: mRNA localization in mouse ovaries and implanting embryos. J Cell Biol 109:2471–2479

    PubMed  CAS  Google Scholar 

  • Sasaki T, Mann K, Murphy G, Chu M-L, Timpl R (1996) Different susceptibilities of fibulin-1 and fibulin-2 to cleavage by matrix metalloproteinases and other tissue proteases. Eur J Biochem 240:427–434

    PubMed  CAS  Google Scholar 

  • Schick LA, Castellino FJ (1973) Interaction of streptokinase and rabbit plasminogen. Biochemistry 12:4315–4321

    PubMed  CAS  Google Scholar 

  • Schick LA, Castellino FJ (1974) Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem Biophys Res Comm 57:47–54

    PubMed  CAS  Google Scholar 

  • Schlechte W, Brattain M, Boyd D (1990) Invasion of extracellular matrix by cultured colon cancer cells: Dependence on urokinase receptor display. Cancer Commun 2:173–179

    PubMed  CAS  Google Scholar 

  • Schlechte W, Murano G, Boyd D (1989) Examination of the role of the urokinase receptor in human colon cancer mediated laminin degradation. Cancer Res 49:6064–6069

    PubMed  CAS  Google Scholar 

  • Schlott B, Guhrs KH, Hartmann M, Rocker A, Collen D (1997) Staphylokinase requires NH2-terminal proteolysis for plasminogen activation. J Biol Chem 272:6067–6072

    PubMed  CAS  Google Scholar 

  • Schousboe I, Feddersen K, Røjkjaer R (1999) Factor XIIa is a kinetically favorable plasminogen activator. Thromb Haemost 82:1041–1046

    PubMed  CAS  Google Scholar 

  • Schuster V, Mingers AM, Seidenspinner S, Nussgens Z, Pukrop T, Kreth HW (1997) Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood 90:958–966

    PubMed  CAS  Google Scholar 

  • Sehl LC, Castellino FJ (1990) Thermodynamic properties of the binding of β-, ω-amino acids to the isolated kringle 4 region of human plasminogen as determined by high sensitivity titration calorimetry. J Biol Chem 265:5482–5486

    PubMed  CAS  Google Scholar 

  • Sharp PA (1981) Speculations on RNA splicing. Cell 23:643–646

    PubMed  CAS  Google Scholar 

  • Shi G-Y, Chang B-I, Chen S-M, Wu D-H, Wu H-L (1994) Function of streptokinase fragments in plasminogen activation. Biochem J 304:235–241

    PubMed  CAS  Google Scholar 

  • Siefring GE, Castellino FJ (1976) The interaction of streptokinase and plasminogen. Isolation and characterization of a streptokinase degradation product. J Biol Chem 251:3913–3921

    PubMed  CAS  Google Scholar 

  • Sodetz JM, Brockway WJ, Castellino FJ (1972) Multiplicity of rabbit plasminogen. Physical characterization. Biochemistry 11:4451–4458

    PubMed  CAS  Google Scholar 

  • Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S (1978) The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “mini” plasminogen (MW, 38000) by elastase-catalyzed-specific limited proteolysis. Prog Chem Fibrinolysis and Thrombolysis 3:191–209

    CAS  Google Scholar 

  • Stahl A, Mueller BM (1994) Binding of urokinase to its receptor promotes migration and invasion of human melanoma cells in vitro. Cancer Res 54:3066–3071

    PubMed  CAS  Google Scholar 

  • Stathakis P, Fitzgerald M, Matthias LJ, Chesterman CN, Hogg PJ (1997) Generation of angiostatin by reduction and proteolysis of plasmin. Catalysis by a plasmin reductase secreted by cultured cell. J Biol Chem 272:20641–20645

    PubMed  CAS  Google Scholar 

  • Steffens GJ, Günzler WA, Ötting F, Frankus E, Flohé L (1982) The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe-Seyler’s Z Physiol Chem 363:1043–1058

    PubMed  CAS  Google Scholar 

  • Stoppelli MP, Corti A, Stoffientini A, Cassani G, Blasi F, Assoian RK (1985) Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA 82:4939–4943

    PubMed  CAS  Google Scholar 

  • Stoppelli MP, Tacchetti C, Cubellis MV, Corti A, Hearing VJ, Cassani G, Appella E, Blasi F (1986) Autocrine saturation of prourokinase receptors on human A431 cells. Cell 45:675–684

    PubMed  CAS  Google Scholar 

  • Strickland S, Reich E, Sherman MZ (1976) Plasminogen activator in early embryogenesis: Enzyme production by trophoblast and parietal endotherm. Cell 9:231–240

    PubMed  CAS  Google Scholar 

  • Stricklin GP, Bauer EA, Jeffrey JJ, Eisen A (1977) Human skin collagenase: Isolation of precursor and active forms from both fibroblast and organ cultures. Biochemistry 16:1607–1615

    PubMed  CAS  Google Scholar 

  • Suenson E, Thorsen S (1981) Secondary-site binding of glu-plasmin, lys-plasmin and miniplasmin to fibrin. Biochem J 197:619–628

    PubMed  CAS  Google Scholar 

  • Summaria L, Arzadon L, Bernabe P, Robbins KC (1974) The interaction of streptokinase with human, cat, dog, and rabbit plasminogens. J Biol Chem 15:4670–4679

    Google Scholar 

  • Summaria L, Robbins KC (1976) Isolation of a human-plasmin-derived functionally active, light (B) chain capable of forming with streptokinase an equimolar light (B) chain-streptokinase complex with plasminogen activating activity. J Biol Chem 251:5810–5813

    PubMed  CAS  Google Scholar 

  • Tsirka SE, Bugge TH, Degen JL, Strickland S (1997) Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proc Natl Acad Sci USA 94:9779–9781

    PubMed  CAS  Google Scholar 

  • Ueshima S, Silence K, Collen D, Lijnen HR (1993) Molecular conversions of recombinant staphylokinase during plasminogen activation in purified systems and in human plasma. Thromb Haemostas 70:495–499

    CAS  Google Scholar 

  • Ueshima S, Okada K, Matsumoto H, Takaishi T, Fukao H, Matsuo O (1996) Effects of endothelial cells on activity of staphylokinase. Blood Coagulat Fibrinol 7:522–529

    CAS  Google Scholar 

  • Unkeless JC, Gordon S, Reich E (1974) Secretion of plasminogen activator by stimulated macrophages. J Exp Med 139:834–850

    PubMed  CAS  Google Scholar 

  • Urano T, Chibber BAK, Castellino FJ (1987a) The reciprocal effects of e-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human urokinase. Proc Natl Acad Sci USA 84:4031–4034

    PubMed  CAS  Google Scholar 

  • Urano T, de Serrano VS, Chibber BAK, Castellino FJ (1987b) The control of the urokinase-catalyzed activation of human glutamic acid 1-plasminogen by positive and negative effectors. J Biol Chem 262:15959–15964

    PubMed  CAS  Google Scholar 

  • Urano T, de Serrano VS, Gaffney PJ, Castellino FJ (1988a) The activation of human [Glu1] plasminogen by human single-chain urokinase. Arch Biochem Biophys 264:222–230

    PubMed  CAS  Google Scholar 

  • Urano T, de Serrano VS, Gaffney PJ, Castellino FJ (1988b) Effectors of the activation of human [Glu1]plasminogen by human tissue plasminogen activator. Biochemistry 27:6522–6528

    PubMed  CAS  Google Scholar 

  • Vassalli J-D, Baccino D, Belin D (1985) A cellular binding site for the Mr 55000 form of the human plasminogen activator, urokinase. J Cell Biol 100:86–92

    PubMed  CAS  Google Scholar 

  • Violand BN, Byrne R, Castellino FJ (1978) The effect of α-ω-amino acids on human plasminogen structure and activation. J Biol Chem 253:5395–5401

    PubMed  CAS  Google Scholar 

  • Violand BN, Castellino FJ (1976) Mechanism of urokinase-catalyzed activation of human plasminogen. J Biol Chem 251:3906–3912

    PubMed  CAS  Google Scholar 

  • Violand BN, Sodetz JM, Castellino FJ (1975) The effect of ε-aminocaproic acid on the gross conformation of plasminogen and plasmin. Arch Biochem Biophys 170:300–305

    PubMed  CAS  Google Scholar 

  • Virgi MAG, Vassalli JD, Estensen RD, Reich E (1980) Plasminogen activator of islets of Langerhans: modulation by glucose and correlation with insulin production. Proc Natl Acad Sci USA 77:875–879

    Google Scholar 

  • Walter F, Siegel M, Malke H (1989) Nucleotide sequence of a streptokinase gene from a group G Streptococcus. Nucleic Acids Res 17:1261

    PubMed  CAS  Google Scholar 

  • Wang H, Prorok M, Bretthauer RK, Castellino FJ (1997) Serine-578 is a major phosphorylation locus in human plasma plasminogen. Biochemistry 36:8100–8106

    PubMed  CAS  Google Scholar 

  • Wang X, Lin X, Loy JA, Tang J, Zhang XC (1998) Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281:1662–1665

    PubMed  CAS  Google Scholar 

  • Wang X, Terzyan S, Tang J, Loy JA, Lin X, Zhang XC (2000) Human plasminogen catalytic domain undergoes an unusual conformational change upon activation. J Mol Biol 295:903–914

    PubMed  CAS  Google Scholar 

  • Wang Y, Dang JJ, Johnson LK, Selhamer JJ, Doe WF (1995) Structure of the human urokinase receptor gene and its similarity to CD59 and the ly-6 family. Eur J Biochem 227:116–122

    PubMed  CAS  Google Scholar 

  • Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    PubMed  CAS  Google Scholar 

  • Wiman B (1973) Primary structure of peptides released during activation of human plasminogen by urokinase. Eur J Biochem 39:1–9

    PubMed  CAS  Google Scholar 

  • Wiman B (1977) The primary structure of the (light) chain of human plasmin. Eur J Biochem 76:129–137

    PubMed  CAS  Google Scholar 

  • Wiman B, Wallén P (1975) Amino-acid sequence of the cyanogen-bromide fragment from human plasminogen that forms the linkage between the plasmin chains. Eur J Biochem 58:539–547

    PubMed  CAS  Google Scholar 

  • Wistedt AC, Kotarsky H, Marti D, Ringdahl U, Castellino FJ, Schaller J, Sjöbring U (1998) Kringle 2 mediates high affinity binding of plasminogen to a defined natural sequence in streptococcal surface protein PAM. J Biol Chem 273:24420–24424

    PubMed  CAS  Google Scholar 

  • Wohlwend A, Belin D, Vassali J-D (1987) Plasminogen activator-specific inhibitors produced by human monocytes/macrophages. J Exp Med 165:320–339

    PubMed  CAS  Google Scholar 

  • Wu T-P, Padmanabhan K, Tulinsky A, Mulichak AM (1991) The refined structure of the ε-aminocaproic acid complex of human plasminogen kringle 4. Biochemistry 30:10589–10594

    PubMed  CAS  Google Scholar 

  • Wulf RJ, Mertz ET (1969) Studies on plasminogen. VIII. Species specificity of streptokinase. Can J Biochem 47:927–931

    PubMed  CAS  Google Scholar 

  • Young K-C, Shi G-Y, Chang Y-F, Chang B-I, Chang L-C, Lai M-D, Chuang W-J, Wu H-L (1995) Interaction of plasminogen and streptokinase-studies with truncated streptokinase peptides. J Biol Chem 270:29601–29606

    PubMed  CAS  Google Scholar 

  • Young K-C, Shi G-Y, Wu D-H, Chang L-C, Chang B-I, Ou C-P, Wu H-L (1998) Plasminogen activation by streptokinase via a unique mechanism. J Biol Chem 273:3110–3116

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Castellino, F.J., Ploplis, V.A. (2001). Plasminogen and Streptokinase. In: Bachmann, F. (eds) Fibrinolytics and Antifibrinolytics. Handbook of Experimental Pharmacology, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56637-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56637-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63029-3

  • Online ISBN: 978-3-642-56637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics