Skip to main content

Abstract

The standard first-order relativistic thermodynamic theories developed by Eckart [17.1] and Landau and Lifshitz [17.2] suffer from two main drawbacks: firstly, they predict an infinite speed for the propagation of thermal and viscous signals. This fact may be uncomfortable in classical thermodynamics, because of its inconsistency with the principle of causality and some experimental data, but it is certainly intolerable in any relativistic theory. Secondly, the transport equations of the first-order theory lead to some undesirable generic instabilities: as a matter of fact, small-amplitude disturbances from equilibrium diverge exponentially with time on very short time scales [17.3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Eckart, Phys. Rev. 58 (1940) 919.

    Article  ADS  Google Scholar 

  2. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 1985.

    Google Scholar 

  3. W.A. Hiscock and L. Lindblom, Phys. Rev. D 31 (1985) 725.

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Kranys, Nuovo Cimento B 50 (1967) 48; Nuovo Cimento 88 (1972) 417.

    Article  ADS  Google Scholar 

  5. I. Müller, Arch. Rat. Mech. Anal. 34 (1969) 259.

    Article  MATH  Google Scholar 

  6. W. Israel, Ann. Phys. (NY) 100 (1976) 310; Physica A 106 (1981) 204.

    Article  MathSciNet  ADS  Google Scholar 

  7. W. Israel and J.M. Stewart, Ann. Phys. (NY) 118 (1979) 341; J.M. Stewart, Proc. Roy. Soc. London A 357 (1977) 59; N. Udey and W. Israel, Mon. Not. R. Astron. Soc. 199 (1982)1137.

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Pavón, D. Jou, and J. Casas-Vázquez, Ann. Inst. H. Poincaré A 36 (1982) 79; J. Non-Equilib. Thermodyn. 6 (1981) 173; Ann. Inst. H. Poincaré 42 (1985) 31.

    Google Scholar 

  9. F. Bampi and A. Morro, Phys. Lett. A 79 (1980) 156; J. Math. Phys. 21 (1980) 1201.

    Article  MathSciNet  ADS  Google Scholar 

  10. M.A. Schweizer, Astron. Astrophys. 151 (1985) 79.

    ADS  Google Scholar 

  11. W.G. Dixon, Special Relativity, Cambridge University Press, Cambridge, 1978.

    MATH  Google Scholar 

  12. I.S. Liu, I. Müller, and T. Ruggeri, Ann. Phys. (NY) 169 (1986) 191; W. Dreyer and W. Weiss, Ann. Inst. H. Poincaré 45 (1986) 401.

    Article  ADS  Google Scholar 

  13. G. Boillat and T. Ruggeri, Continuum Mech. Thermodyn. 10 (1998) 285; H. Struchtrup, Physica A 253 (1998) 555; Z. Banach, Physica A 275 (2000) 405.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. Pavón, D. Jou, and J. Casas-Vázquez, Phys. Lett. A 78 (1980) 317.

    Article  ADS  Google Scholar 

  15. W.A. Hiscock and L. Lindblom, Ann. Phys. (NY) 151 (1983) 466.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. G.A. Kluitenberg, S.R. de Groot, and P. Mazur, Physica 19 (1953) 689.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Bressan, Relativistic Theories of Materials, Springer, Berlin, 1978.

    Book  MATH  Google Scholar 

  18. C. van Weert, Ann. Phys. (NY) 140 (1982) 133.

    Article  ADS  MATH  Google Scholar 

  19. A. Palumbo and P. Pantano, Lett. Nuovo Cimento 41 (1984) 247; M.P. Galipo, Nuovo Cimento 38 (1983) 233,427,544.

    Article  MathSciNet  ADS  Google Scholar 

  20. S.R. de Groot, W.A. van Leeuwen, and C. van Weert, Relativistic Kinetic Theory: Principles and Applications, North-Holland, Amsterdam, 1980.

    Google Scholar 

  21. J.J. Griffin and K.K. Kan, Rev. Mod. Phys. 48 (1976) 467; H. Stöcker and W. Greiner, Phys. Rep. 137 (1986) 277; L.W. Neise, H. Stöcker and W. Greiner, J. Phys. G 13 (1987) L 181; H.W. Barz, B. Kämpfer, B. Lukács, K. Martinás, and Gy. Wolf, Phys. Lett. B 194 (1987) 15.

    Article  ADS  Google Scholar 

  22. P. Danielewicz, Phys. Lett. B 146 (1984) 168; G. Fai and P. Danielewicz, Phys. Lett. B 373 (1996) 5.

    Article  ADS  Google Scholar 

  23. M. Kozlowski, Nucl. Phys. A 492 (1989) 285; T.S. Olson and W.A. Hiscock, Phys. Rev. C 39 (1989) 1818.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jou, D., Casas-Vázquez, J., Lebon, G. (2001). Relativistic Formulation. In: Extended Irreversible Thermodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56565-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56565-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62505-3

  • Online ISBN: 978-3-642-56565-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics