Skip to main content

Abstract

In ordinary incompressible fluids the flow and transport phenomena are fairly well described by Newton’ linear constitutive equation for the viscous pressure tensor Pv

$$ P^v = - 2\eta V, $$
(15.1)

V is the symmetric (and traceless, because of incompressibility) part of the velocity gradient and n the dynamic viscosity, which may depend on the temperature and the pressure, but not on the velocity gradient However, it has been observed that there exists a wide class of materials, such as polymers, soap solutions, some honeys, asphalts, and physiological fluids, that fail to obey ((15.1)): these materials are generally referred to as viscoelastic materials. They behave as fluids with a behaviour reminiscent of solids by exhibiting elastic effects. In ordinary fluids, the relaxation of the pressure tensor is very short, in elastic bodies it is infinite so that no relaxation is observed: viscoelastic materials are characterized by relaxation times between these two limits. Materials with the above property are also called non-Newtonian in the technical literature. The terms ‘viscoelastic’ and ‘non-Newtonian’ are used rather loosely; here we shall reserve the term ‘non-Newtonian’ for any material described by a non-linear constitutive relation between the pressure tensor and the velocity gradient tensor, and the term ‘linear viscoelastic’ will be used for systems exhibiting both viscous and elastic effects in the linear regime and described by material coefficients independent of the velocity gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Meixner, Z. Naturforsch. 4a (1943) 594; 9a (1954) 654.

    ADS  Google Scholar 

  2. G. Kluitenberg, Plasticity and Non-equilibrium Thermodynamics (CISM Course 281), Springer, Wien, 1984; G. Kluitenberg in Non-equilibrium Thermodynamics, Variational Techniques and Stability (R. Donnelly, R. Hermann, and I. Prigogine, eds.), University of Chicago Press, Chicago, 1966.

    Google Scholar 

  3. J. Bataille and J. Kestin, J. Mécanique 14 (1975) 365.

    MathSciNet  ADS  MATH  Google Scholar 

  4. R.S. Rivlin and J.L. Ericksen, J. Rat. Mech. Anal. 4 (1955) 323.

    MathSciNet  MATH  Google Scholar 

  5. W. Noll, J. Rat. Mech. Anal. 4 (1955) 3.

    MathSciNet  MATH  Google Scholar 

  6. S. Koh and C. Eringen, Int. J. Engn. Sci. 1 (1963) 199.

    Article  MathSciNet  Google Scholar 

  7. B.D. Coleman, H. Markowitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids, Springer, New York, 1966.

    Book  Google Scholar 

  8. R.R. Huilgol and N. Phan-Thien, Int. J. Engn. Sci. 24 (1986) 161.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Palumbo and G. Valenti, J. Non-Equilib. Thermodyn. 10 (1985) 209; G. Valenti, Physica A 144 (1987)211.

    Article  ADS  MATH  Google Scholar 

  10. M. López de Haro, L.F. del Castillo, and R.F. Rodríguez, Rheol. Acta 25 (1986) 207.

    Article  MATH  Google Scholar 

  11. B.C. Eu, J. Chem. Phys. 82 (1985) 4683.

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Lebon, C. Pérez-García, and J. Casas-Vázquez, Physica 137 A (1986) 531.

    Article  Google Scholar 

  13. G. Lebon, C. Pérez-García, and J. Casas-Vázquez, J. Chem. Phys. 88 (1988) 5068; G. Lebon and J. Casas-Vázquez, Int. J. Thermophys. 9 (1988) 1003.

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Lebon and A. Doot, J. Non-Newtonian Fluid Mech. 28 (1988) 61.

    Article  MATH  Google Scholar 

  15. P.E. Rouse, J. Chem. Phys. 21 (1953) 1272; B.H. Zimm, J. Chem. Phys. 24 (1956) 269.

    Article  ADS  Google Scholar 

  16. H. Giesekus, J. Non-Newtonian Fluid Mech. 11 (1982) 69.

    Article  MATH  Google Scholar 

  17. A.S. Lodge, Elastic Liquids, Academic Press, New York, 1964.

    Google Scholar 

  18. J.D. Ferry, Viscoelastic Properties of Polymers (3rd edn), Wiley, New York, 1980.

    Google Scholar 

  19. G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.

    Google Scholar 

  20. P.J. Carreau, Trans. Soc. Rheol. 16 (1972) 99.

    Article  Google Scholar 

  21. J.E. Dunn and R.L. Fosdick, Arch. Rat. Mech. Anal. 56 (1974) 191.

    Article  MathSciNet  Google Scholar 

  22. W.O. Criminate, J.L. Ericksen, and G.K. Filbey, Arch. Rat. Mech. Anal. 2 (1958) 410.

    Google Scholar 

  23. A.E. Green and R.S. Rivlin, Arch. Rat Mech. Anal. 1 (1957) 1.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.G. Oldroyd, Proc. Roy. Soc. London A 245 (1958) 278.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. J. Crochet, A. Davies, and K. Walters, Numerical Simulation of Non-Newtonian Flow, Elsevier, Amsterdam, 1984.

    MATH  Google Scholar 

  26. J.C. Maxwell, Phil. Trans. Roy. Soc. London A 157 (1867) 49.

    Article  Google Scholar 

  27. J. Lambermont and G. Lebon, Int. J. Non-linear Mech. 9 (1974) 55.

    Article  ADS  MATH  Google Scholar 

  28. R.F. Rodríguez, M. López de Haro, and O. Manero, Rheol. Acta 27 (1988) 217.

    Article  MATH  Google Scholar 

  29. G. Lebon in Extended Thermodynamic Systems (P. Salamon and S. Sieniutycz, eds.), Taylor and Francis, New York, 1990.

    Google Scholar 

  30. R.B. Bird, R.C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 2nd edn. Vol. 1: Fluid Mechanics; R.B. Bird, C.F. Curtiss, R.C. Armstrong, and O. Hassager, Vol. 2: Kinetic Theory, Wiley, New York, 1987.

    Google Scholar 

  31. M. Doi and S.F. Edwards, The Theory of Polymer Dynamics, Clarendon, Oxford, 1986.

    Google Scholar 

  32. C. Pérez-García, J. Casas-Vázquez, and G. Lebon, J. Polym. Sci (B. Polym. Phys.) 27 (1989)1807.

    Article  ADS  Google Scholar 

  33. H. Metiu and K. Freed, J. Chem. Phys. 67 (1977) 3303.

    Article  ADS  Google Scholar 

  34. J. Camacho and D. Jou, J. Chem. Phys. 92 (1990) 1339.

    Article  ADS  Google Scholar 

  35. I. Müller and K. Wilmanski, Rheol. Acta 25 (1986) 335.

    Article  MATH  Google Scholar 

  36. I.S. Liu and I. Müller, Arch. Rat. Mech. Anal. 83 (1983) 285.

    Article  MATH  Google Scholar 

  37. H. Tanner, Engineering Rheology, Clarendon, Oxford, 1985.

    MATH  Google Scholar 

  38. R.F. Christiansen and W.R. Leppard, Trans. Soc. Rheol. 18 (1974) 65.

    Article  Google Scholar 

  39. A.S. Lodge, J. Rheol. 33 (1989) 821.

    Article  ADS  Google Scholar 

  40. G. Lebon, P. Dauby, A. Palumbo, and G. Valenti, Rheol. Acta 29 (1990) 127.

    Article  MATH  Google Scholar 

  41. P.C. Dauby and G. Lebon, Appl. Math. Lett. 33 (1990) 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jou, D., Casas-Vázquez, J., Lebon, G. (2001). Rheological Materials. In: Extended Irreversible Thermodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56565-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56565-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62505-3

  • Online ISBN: 978-3-642-56565-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics