Skip to main content

Dynamics of Spatial and Temporal Complexity in European and North American Soft-Bottom Mussel Beds

  • Chapter
Ecological Comparisons of Sedimentary Shores

Part of the book series: Ecological Studies ((ECOLSTUD,volume 151))

Abstract

Mussel beds are conspicuous features of temperate and boreal coastlines. Beds of the edible or blue mussel, Mytilus edulis, can extend for kilometers along the shore. Soft-bottom beds have density, biomass, and respiratory flow values among the highest of any community known (Nixon et al. 1971; Seed 1976; Asmus 1987). In Europe, both rocky shore and soft-bottom mussel beds have been well studied for many years because of their ecological importance and economic value as a wild and cultured fishery. In North America it is probably fair to say that rocky shore mussel beds have received the lion’s share of attention because of the role they have historically played as a model system, one that is especially amenable to experimental manipulations in the field. Investigations such as those by Paine (1966) and Dayton (1971) along the Pacific shore, generally involving Mytilus californianus, have become classics in the field of ecology and were among the first to demonstrate the power of field experiments. This focus on rocky shore mussels by North American ecologists has resulted in less knowledge about soft-bottom Mytilus edulis beds on western Atlantic shores than along the coastlines of European countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson A, Denny M (1997) Settlement of organisms in flow. Annu Rev Ecol Syst 28:317–339

    Article  Google Scholar 

  • Albrecht AS (1998) Soft bottom versus hard rock: community ecology of macro algae on intertidal mussel beds in the Wadden Sea. J Exp Mar Biol Ecol 229:85–109

    Article  Google Scholar 

  • Albrecht A, Reise K (1994) Effects of Fucus vesiculosus covering intertidal mussel beds in the Wadden Sea. Helgoländer Meeresunters 48:243–256

    Article  Google Scholar 

  • Asmus H (1987) Secondary production of an intertidal mussel bed community related to its storage and turnover compartments. Mar Ecol Prog Ser 39:251–266

    Article  Google Scholar 

  • Asmus RM, Asmus H (1991) Mussel beds: limiting or promoting phytoplankton? J Exp Mar Biol Ecol 148:215–232

    Article  Google Scholar 

  • Asmus H, Asmus RH, Prins TC, Dankers N, FrancĂ© G, MaaĂź B, Reise K (1992) Benthic-pelagic flux rates on mussel beds: tunnel and tidal flume methodology compared. Helgolander Meeresunters 46:341–361

    Article  Google Scholar 

  • Bayne BL, Thompson RJ, Widdows J (1976) Physiology. I. In: Bayne BL (ed) Marine mussels: their ecology and physiology. Cambridge Univ Press, Cambridge, pp 121–206

    Google Scholar 

  • Beck MW (1998) Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrove habitats. Mar Ecol Prog Ser 169:165–178

    Article  Google Scholar 

  • Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs and benefits of an aggregated distribution. Oecologia 67:192–204

    Article  Google Scholar 

  • Beukema JJ (1993) Increased mortality in alternative bivalve prey during a period when the tidal flats of the Dutch Wadden Sea were devoid of mussels. Neth J Sea Res 31:395–406

    Article  Google Scholar 

  • Beukema JJ, CadĂ©e GC (1996) Consequences of the sudden removal of nearly all mussels and cockles from the Dutch Wadden Sea. P.S.Z.N.: Mar Ecol 17:279–289

    Article  Google Scholar 

  • Bustnes JO, Erikstad KE (1990) Size-selection of common mussels, Mytilus edulis, by common eiders, Somateria mollissima,: energy maximization or shell weight minimization? Can J Zool 68:2280–2283

    Article  Google Scholar 

  • Butman CA, Frechette M, Geyer WR, Starczak VR (1994) Flume experiments on food supply to the blue mussel Mytilus edulis L. as a function of boundary-layer flow. Limnol Oceanogr 39:1755–1768

    Article  Google Scholar 

  • Ceccherelli VU, Rossi R (1984) Settlement, growth and production of the mussel Mytilus galloprovincialis. Mar Ecol Prog Ser 16:173–184

    Article  Google Scholar 

  • Commito JA (1987) Adult-larval interactions: predictions, mussels and cocoons. Estuar Coast Shelf Sci 25:599–606

    Article  Google Scholar 

  • Commito JA, Boncavage EM (1989) Suspension-feeders and coexisting infauna: an enhancement counter example. J Exp Mar Biol Ecol 125:33–42

    Article  Google Scholar 

  • Commito JA, Rusignuolo BR (2000) Structural complexity in mussel beds: the fractal geometry of surface topography. J Exp Mar Biol Ecol 255:133–152

    Article  PubMed  Google Scholar 

  • Commito JA, Thrush SA, Pridmore RD, Hewitt JE, Cummings VJ (1995) Dispersal dynamics in a wind-driven benthic system. Limnol Oceanogr 40:1513–1518

    Article  Google Scholar 

  • CĂ´tĂ© IM, Jelnikar E (1999) Predator-induced clumping behavior in mussels (Mytilus edulis Linnaeus). J Exp Mar Biol Ecol 235:201–211

    Article  Google Scholar 

  • Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152

    Article  Google Scholar 

  • Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75

    Article  Google Scholar 

  • Cummings VJ, Thrush SF, Hewitt JE, Turner SJ (1998) The influence of the pinnid bivalve Atrina zelandica (Gray) on benthic macroinvertebrate communities in soft-sediment habitats. J Exp Mar Biol Ecol 228:227–240

    Article  Google Scholar 

  • Dame R, Dankers N, Prins T, Jongsma H, Smaal A (1991) The influence of mussel beds on nutrients in the western Wadden Sea and eastern ScheIdt estuaries. Estuaries 14:130–138

    Article  CAS  Google Scholar 

  • Dankers N (1993) Integrated estuarine management-obtaining a sustainable yield of bivalve resources while maintaining environmental quality. In: Dame RF (ed) Bivalve filter feeders in estuarine and coastal ecosystem processes. NATO ASI series G, vol 33. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Dankers N, Koelemaij K (1989) Variations in the mussel population of the Dutch Wadden Sea in relation to monitoring. Helgolander Meeresunters 43:529–535

    Article  Google Scholar 

  • Dankers N, Zuidema DR (1995) The role of the mussel (Mytilus edulis) and mussel culture in the Dutch Wadden Sea. Estuaries 18:71–80

    Article  Google Scholar 

  • Dankers N, Herlyn M, Sand Kristensen P, Michaelis H, Millat G, Nehls G, Ruth M (1999) Blue mussels and blue mussel beds in the littoral. In: De Jong (ed) Wadden sea quality status report. Wadden Sea Ecosystem no. 9. CWSS, Wilhelmshaven 141–145

    Google Scholar 

  • Davenport J, Pugh PJA, McKechnie J (1996) Mixed fractals and anisotropy in subantarctic marine macro algae from South Georgia: implications for epifaunal biomass and abundance. Mar Ecol Prog Ser 136:245–255

    Article  Google Scholar 

  • Davenport J, Butler A, Cheshire A (1999) Epifaunal composition and fractal dimensions of marine plants in relation to emersion. J Mar Biol Assoc UK 79:351–355

    Article  Google Scholar 

  • Dayton PK (1971) Competition, disturbance and community organization: the provision of and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389

    Article  Google Scholar 

  • Dittmann S (1990) Mussel beds-amensalism or amelioration for intertidal fauna? Helgolander Meeresunters 44:335–352

    Article  Google Scholar 

  • Dolmer P (1998) The interactions between bed structure of Mytilus edulis L. and the predator Asterias rubens L. J Exp Mar Biol Ecol 228:137–150

    Article  Google Scholar 

  • Dolmer P, Svane I (1994) Attachment and orientation of Mytilus edulis L. in flowing water. Ophelia 40:63–74

    Article  Google Scholar 

  • Eckman JE (1990) A model of passive settlement by planktonic larvae onto bottoms of differing roughness. Limnol Oceanogr 35:887–901

    Article  Google Scholar 

  • FrĂ©chette M, Bourget E (1985a) Energy flow between the pelagic and benthic zones: factors controlling particulate organic matter available to an intertidal mussel bed. Can J Fish Aquat Sci 42:1158–1165

    Article  Google Scholar 

  • FrĂ©chette M, Bourget E (1985b) Food-limited growth of Mytilus edulis L. in relation to the benthic boundary layer. Can J Fish Aquat Sci 42:1166–1170

    Article  Google Scholar 

  • FrĂ©chette M, Despland E (1999) Impaired shell gaping and food depletion as mechanisms of asymmetric competition in mussels. Ecoscience 6:1–11

    Google Scholar 

  • FrĂ©chette M, Lefaivre D (1990) Discriminating between food and space limitation in benthic suspension feeders using self-thinning relationships. Mar Ecol Prog Ser 65:15–23

    Article  Google Scholar 

  • FrĂ©chette M, Grant J (1991) An in situ estimation of the effect of wind-driven resuspension on the growth of the mussel Mytilus edulis L. J Exp Mar Biol Ecol 148:201–213

    Article  Google Scholar 

  • FrĂ©chette M, Butman CA, Geyer WR (1989) The importance of boundary-layer flows in sampling phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnol Oceanogr 34:19–36

    Article  Google Scholar 

  • FrĂ©chette M, Aitken AE, Page L (1992) Interdependence of food and space limitation of a benthic suspension feeder: consequences for self-thinning relationships. Mar Ecol Prog Ser 83:55–62

    Article  Google Scholar 

  • Gee JM, Warwick RM (1994a) Metazoan community structure in relation to fractal dimensions of marine macro algae. Mar Ecol Prog Ser 103:141–150

    Article  Google Scholar 

  • Gee JM, Warwick RM (1994b) Body-size distribution in a marine metazoan community and the fractal dimensions of macroalgae. J Exp Mar Biol Ecol 178:247–259

    Article  Google Scholar 

  • Goss-Custard JD, Durell SEA, Le V (1988) The effect of dominance and feeding method on the intake rates of oystercatchers, Haematopus ostralegus, feeding on mussels. J Anim Ecol 57:827–844

    Article  Google Scholar 

  • Green MO, Hewitt JE, Thrush SF (1998) Seabed drag coefficient over natural beds of horse mussels (Atrina zelandica). J Mar Res 56:613–637

    Article  Google Scholar 

  • Guillemette M, Himmelman JH (1996) Distribution of wintering common eiders over mussel beds: does the ideal free distribution apply? Oikos 76:435–442

    Article  Google Scholar 

  • GĂĽnther CP (1996) Development of small Mytilus beds and its effects on resident intertidal macrofauna. P.S.Z.N. I. Mar Ecol 17:117-130

    Google Scholar 

  • Hastings HM, Sugihara G (1993) Fractals: a user’s guide for the natural sciences. Oxford Univ Press, Oxford

    Google Scholar 

  • Herlyn M, Michaelis H (1995) Bestandaufnahme und Populationsbiologie von Mytilus edulis L. Methoden der quantitativen Erfassung von Miesmuschelvorkommen. Forschungstelle KĂĽste Norderney 03F0023-A

    Google Scholar 

  • Hilgerloh G, Herlyn M, Michaelis H (1997) The influence of predation by herring gulls Larus argentatus and oystercatchers Haematopus ostralegus on a newly established mussel Mytilus edulis bed in autumn and winter. Helgoländer Meeresunters 51:173–189

    Article  Google Scholar 

  • Hunter J, Arthur DR (1978) Some aspects of the ecology of Peloscolex benedeni Udekem (Oligo chaeta: Tubificidae) in the Thames estuary. Estuar Coastal Mar Sci 6:197–208

    Article  Google Scholar 

  • Jaramillo E, Bertrán C, Bravo A (1992) Community structure of the subtidal macro-infauna in an estuarine mussel bed in southern Chile. P.S.Z.N. I. Mar Ecol 13:317–331

    Article  Google Scholar 

  • Kaandorp JA (1991) Modelling growth forms of the sponge Haliclona oculata (Porifera: Demospongiae) using fractal techniques. Mar Biol 110:203–215

    Article  Google Scholar 

  • Kaandorp JA (1994) Fractal modelling: growth and form in biology. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306

    Article  Google Scholar 

  • Ke X, Collins MB, Poulos SE (1994) Velocity structure and sea bed roughness associated with intertidal (sand and mud) flats and saltmarshes of the Wash, UK. J Coastal Res 10:702–715

    Google Scholar 

  • Kostylev V, Erlandsson J, Johanneson K (1997) Microdistribution of the polymorphic snail Littorina saxatilis (Olivi) in a patchy rocky shore habitat. Ophelia 47:1–12

    Article  Google Scholar 

  • Kröncke I (1996) Impact of biodeposition on macrofaunal communities in intertidal sandflats. P.S.Z.N. I. Mar Ecol 17:159–174

    Article  Google Scholar 

  • Landahl J (1988) Sediment-level fluctuation in a mussel bed on a “protected’ sand-gravel beach. Estuar Coast Shelf Sci 26:255–267

    Article  Google Scholar 

  • Lenihan HS (1999) Physical-biological coupling on oyster reefs: how habitat structure influences individual performance. Ecol Monog 69:251–276

    Google Scholar 

  • Lenihan HS, Peterson CH (1998) How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol Appl 8:128–140

    Article  Google Scholar 

  • Leonard GH, Levine JM, Schmidt PR, Bertness MD (1998) Flow-driven variation in intertidal community structure in a Maine estuary. Ecology 79:1395–1411

    Article  Google Scholar 

  • Leonard GH, Bertness MD, Yund PO (1999) Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14

    Google Scholar 

  • Le Tourneux F, Bourget E (1988) Importance of physical and biological settlement cues used at different spatial scales by the larvae of Semibalanus balanoides. Mar Biol 97:57–66

    Article  Google Scholar 

  • Lin J (1991) Predator-prey interactions between blue crabs and ribbed mussels living in clumps. Estuar Coast Shelf Sci 32:61–69

    Article  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • McGrorty S (1997) Winter growth of mussels Mytilus edulis as a possible counter to food depletion by oystercatchers Haematopus ostralegus. Mar Ecol Prog Ser 153:153–165

    Article  Google Scholar 

  • McGrorty S, Goss-Custard JD (1991) Population dynamics of the mussel Mytilus edulis: spatial variations in age-class densities of an intertidal estuarine population along environmental gradients. Mar Ecol Prog Ser 73:191–202

    Article  Google Scholar 

  • McGrorty S, Goss-Custard JD (1993) Population dynamics of the mussel Mytilus edulis along environmental gradients: spatial variations in density-dependent mortalities. J Anim Ecol 62:415–427

    Article  Google Scholar 

  • McGrorty S, Goss-Custard JD (1995) Population dynamics of Mytilus edulis along environmental gradients: density-dependent changes in adult mussel numbers. Mar Ecol Prog Ser 129:197–213

    Article  Google Scholar 

  • McGrorty S, Clarke RT, Reading CJ, Goss-Custard JD (1990) Population dynamics of the mussel Mytilus edulis: density changes and the regulation of the population in the Exe estuary, Devon. Mar Ecol Prog Ser 67:157–169

    Article  Google Scholar 

  • Meire PM, Ervynck A (1986) Are oystercatchers (Haematopus ostralegus) selecting the most profitable mussels (Mytilus edulis)? Anim Behav 34:1427–1435

    Article  Google Scholar 

  • Mileikovsky SA (1974) On predation of pelagic larvae and early juveniles of marine bottom invertebrates by adult benthic invertebrates and their passing alive through their predators. Mar Biol 26:303–311

    Article  Google Scholar 

  • Möbius K (1877) Die Auster und die Austernwirtschaft. Wiegund, Hempel/Parey, Berlin

    Google Scholar 

  • Nehls G, Thiel M (1993) Large-scale distribution patterns of the mussel Mytilus edulis in the Wadden Sea of Schleswig-Holstein: do storms structure the ecosystem? Neth J Sea Res 31:181–187

    Article  Google Scholar 

  • Nehls G, Hertzler I, Scheiffarth (1997) Stable mussel Mytilus edulis beds in the Wadden Sea-they’re just for the birds. Helgolander Meeresunters 51:361–372

    Google Scholar 

  • Nixon SW, Oviatt CA, Rogers C, Taylor K (1971) Mass and metabolism of a mussel bed. Oecologia 8:21–31

    Article  Google Scholar 

  • Okamura B (1986) Group living and the effects of spatial position in aggregations of Mytilus edulis. Oecologia 69:341–347

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Natur 100:65–75

    Article  Google Scholar 

  • Peake AJ, Quinn GP (1993) Temporal variation in species-area curves for invertebrates in clumps of an intertidal mussel. Ecography 16:269–277

    Article  Google Scholar 

  • Petraitis PS, Latham RE (1999) The importance of scale in testing the origins of alternative community states. Ecology 80:429–442

    Article  Google Scholar 

  • Radziejewska T (1986) On the role of Mytilus edulis aggregations in enhancing meiofauna communities off the southern Baltic coast. Ophelia [Suppl] 4:211–218

    Google Scholar 

  • Ragnarsson SA, Raffaelli D (1999) Effects of Mytilus edulis L. on the invertebrate fauna of sediments. J Exp Mar Biol Ecol 241:31–43

    Article  Google Scholar 

  • Reimer O, Tedengren M (1997) Predator-induced changes in byssal attachment, aggregation and migration in the blue mussel, Mytilus edulis. Mar Fresh Behav Physiol 30:251–266

    Article  Google Scholar 

  • Reise K, Schubert A (1987) Macrobenthic turnover in the subtidal Wadden Sea: the Norderaue revisited after 60 years. Helgoländer Meeresunters 41:69–82

    Article  Google Scholar 

  • Reusch TBH, Chapman ARO (1997) Persistence and space occupancy by subtidal blue mussel patches. Ecol Monogr 67:65–87

    Google Scholar 

  • Ricciardi A, Whoriskey FG, Rasmussen JB (1997) The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54:2596–2608

    Google Scholar 

  • Schwinghamer JY, GuignĂ© JY, Siu WC (1996) Quantifying the impact of trawling on benthic habitat structure using high resolution acoustics and chaos theory. Can J Fish Aquat Sci 53:288–296

    Article  Google Scholar 

  • Seed R (1976) Ecology. In: Bayne BL (ed) Marine mussels: their ecology and physiology. Cambridge Univ Press, Cambridge, pp 13–66

    Google Scholar 

  • Slepnev AY, Protasov AA, Videnina YL (1994) Development of a Dreissena polymorph a population under experimental conditions. Hydrobiol J 30:26–33

    Google Scholar 

  • Snover ML, Commito JA (1998) The fractal geometry of Mytilus edulis spatial distribution in a soft-bottom system. J Exp Mar Biol Ecol 223:53–64

    Article  Google Scholar 

  • Stiven AE, Gardner SA (1992) Population processes in the ribbed mussel Geukensia demissa (Dillwyn) in a North Carolina salt marsh tidal gradient: spatial pattern, predation, growth and mortality. J Exp Mar Biol Ecol 160:81–102

    Article  Google Scholar 

  • Sugihara G, May RM (1990) Applications of fractals in ecology. Trends Ecol Evol 5:79–86

    Article  PubMed  CAS  Google Scholar 

  • Svane J, Ompi M (1993) Patch dynamics in beds of the blue mussel Mytilus edulis L.: effects of site, patch size, and position within a patch. Ophelia 37:187–192

    Article  Google Scholar 

  • Svane J, Setyobudiandi I (1996) Diversity of associated fauna in beds of the blue mussel Mytilus edulis L.: effects of location, patch size, and position within a patch. Ophelia 45:39–53

    Article  Google Scholar 

  • Thorson G (1966) Some factors influencing the recruitment and establishment of marine benthic communities. Neth J Sea Res 3:267–293

    Article  Google Scholar 

  • Tsuchiya M, Nishihira M (1986) Islands of Mytilus edulis as a habitat for small intertidal animals: effect of Mytilus age structure on the species composition of the associated fauna and community organization. Mar Ecol Prog Ser 31:171–178

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Salkeld PN, Elliott M (1998) Use of annular flumes to determine the influence of current velocity and bivalves on material flux at the sediment-water interface. Estuaries 21:552–559

    Article  Google Scholar 

  • Witman JD (1987) Subtidal coexistence: storms, grazing, mutualism, and the zonation of kelps and mussels. Ecol Monogr 57:167–187

    Article  Google Scholar 

  • Witman JD, Suchanek TH (1984) Mussels in flow: drag and dislodgement by epizoans. Mar Ecol Prog Ser 16:259–268

    Article  Google Scholar 

  • Woodin SA (1976) Adult-larval interactions in dense infaunal assemblages: patterns of abundance. J Mar Res 34:25–41

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Commito, J.A., Dankers, N.M.J.A. (2001). Dynamics of Spatial and Temporal Complexity in European and North American Soft-Bottom Mussel Beds. In: Reise, K. (eds) Ecological Comparisons of Sedimentary Shores. Ecological Studies, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56557-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56557-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62517-6

  • Online ISBN: 978-3-642-56557-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics