Skip to main content

The Leaf Canopy of Seagrass Beds: Faunal Community Structure and Function in a Salinity Gradient Along the Swedish Coast

  • Chapter
Ecological Comparisons of Sedimentary Shores

Part of the book series: Ecological Studies ((ECOLSTUD,volume 151))

Abstract

The distribution of eelgrass (Zostera marina, hereafter Zostera) is mainly concentrated along temperate coasts of the Northern Pacific and the Atlantic oceans, and it is the only seagrass extending into Arctic areas (71°N) (Den Hartog 1970). Eelgrass commonly inhabits muddy and sandy bottoms and forms continuous meadows or patchy beds in non-tidal, intertidal as well as subtidal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SM (1976) The ecology of eelgrass, Zostera marina (L.), fish communities. I. Structural analysis. II. Functional analysis. J Exp Mar Biol Ecol 22:269–311

    Article  Google Scholar 

  • Asmus H, Theede H, Neuhoff H-G, Schramm W (1980) The role of epibenthic macrofauna in the oxygen budget of Zostera communities from the Baltic Sea. Ophelia Suppl 1:99–111

    Google Scholar 

  • Baden SP (1990) The cryptofauna of Zostera marina (L.): Abundance, biomass and population dynamics. Neth J Sea Res 27(1):81–92

    Article  Google Scholar 

  • Baden SP, Pihl L (1984) Abundance, biomass and production of mobile epibenthic fauna in Zostera marina (L.) meadows, western Sweden. Ophelia 23:65–90

    Article  Google Scholar 

  • Baden SP, Gerhardt L, Roberts C (2001) The fouling community on eelgrass, Zostera marina (L.), along the Swedish West coast. J Sea Res, subm.

    Google Scholar 

  • Bonsdorff E, Pearson TH (1999) Varation in the sublittoral macrobenthos of the Baltic Sea along environmental gradients: a functional-group approach. Aust J Ecol 24:312–326

    Article  Google Scholar 

  • Borum J (1985) Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar Biol 87:211–218

    Article  Google Scholar 

  • Boström C (1996) Zoobenthic community structure in Zostera marina L. meadows-spatial and temporal variation. MSc thesis (in Swedish, abstract in English), Åbo Akademi Univ, 87 pp

    Google Scholar 

  • Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina L.) beds in the northern Baltic Sea. J Sea Res 37:153–166

    Article  Google Scholar 

  • Boström C, Bonsdorff E (2000) Zoobenthic community establishment and habitat complexity-the importance of seagrass shoot density and morphology for faunal recruitment. Mar Ecol Prog Ser 205:123–138

    Article  Google Scholar 

  • Boström C, Mattila J (1999) The relative importance of food and shelter for seagrassassociated invertebrates: a latitudinal comparison of habitat choice by isopod grazers. Oecologia 120:162–170

    Article  Google Scholar 

  • Brönmark C (1985) Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos 45:26–30

    Article  Google Scholar 

  • Cooper WE, Crowder LE (1979) Patterns of predation in simple and complex environments. In: Shoud RH, Clopper H (eds) Predator prey systems in fisheries management. Sport Fisheries Institute, Washington, DC

    Google Scholar 

  • Connolly (1994) Removal of seagrass canopy: effects on small fish and their prey. J Exp Mar Biol Ecol 184:99–110

    Google Scholar 

  • Dahl E (1973) Ecological range of Baltic and North Sea species. Oikos 15:85–90

    Google Scholar 

  • Den Hartog C (1970) The seagrasses of the world. Verh K Ned Ak Wet Adf. North-Holland Amsterdam 59:1–275

    Google Scholar 

  • Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 4:87–112

    Google Scholar 

  • Edgar GJ (1990) Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass. J Exp Mar Biol Ecol 144:205–234

    Article  Google Scholar 

  • Edgar GJ, Robertson AI (1992) The influence of seagrass structure on the distribution and abundance of mobile epifauna: pattern and process in a Western Australian Amphibolis bed. J Exp Mar Biol Ecol 160:13–31

    Article  Google Scholar 

  • Elmgren R (1984) Trophic dynamics in enclosed, brackish Baltic Sea. Rapp P-V Reun Cons Int Explor Mer 183:152–169

    Google Scholar 

  • Fagerholm (1978) The effects of ferry traffic (artificial wave action) on the rocky shore macrofauna in the southern Åland archipelago in the northern Baltic. 2. The Fucus zone (a quantitative study). Kieler Meeresforsch 4:130–137

    Google Scholar 

  • Fonseca MS, Fisher JS (1986) A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol Prog Ser 29:15–22

    Article  Google Scholar 

  • Fonseca MS, Zieman JC, Thayer GW, Fisher JS (1983) The role of current velocalitie in structuring eelgrass (Zostera marina) meadows. Estuar Coast Shelf Sci 17:367–380

    Article  Google Scholar 

  • Gambi MC, Nowell ARM, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61:159–169

    Article  Google Scholar 

  • Gore RH (1992) The Gulf of Mexico: a treasury of resources in the American Mediterranean. Pineapple Press, Sarasota, Florida, 384 PP

    Google Scholar 

  • Göthberg A, Röndell B (1973) Ekologiska studier i Zostera samhället I norra Östersjön. Inf Sötvattenslab, Drottningholm, p 11

    Google Scholar 

  • Haahtela I (1969) The Finnish IBP-PM Group: quantitative sampling equipment for the littoral benthos. Int Revue Ges Hydrobiol 54:185–193

    Article  Google Scholar 

  • Hakansson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin Heidelberg New York, 316 pp

    Book  Google Scholar 

  • Hauxwell J, McClelland J, Behr PJ, Valiela I (1998) Relative importance of grazing and nutrient controls of macro algal biomass in three temperate shallow estuaries. Estuaries 21(2):347–360

    Article  Google Scholar 

  • Heck KL Jr, Crowder LB (1991) Habitat structure and predator-prey interaction in vegetated aquatic systems. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat complexity: the physical arrangement of objects in space. Chapman and Hall, New York, pp 281–299

    Google Scholar 

  • Heck KL Jr, Orth RJ (1980) Seagrass habitats: the roles of habitat complexity, composition and predation in structuring associated fish and motile macroinvertebrate assemblages. In: Kennedy VS (ed) Estuarine perspectives. Academic Press, New York, pp 448–464

    Google Scholar 

  • Heck KL Jr, Thoman TA (1984) The nursery role of seagrass meadows in the upper and lower reaches of Chesapeake Bay. Estuaries 7:70–92

    Article  Google Scholar 

  • Heck KL Jr, Able KW, Fahay MP, Roman CT (1989) Fishes and decapod crustaceans of Cape Cod eelgrass meadows: species composition, seasonal abundance patterns and comparison with unvegetated substrates. Estuaries 12(2):59–65

    Article  Google Scholar 

  • Heck KL Jr, Pennock JR, Valentine JF, Coen LD, Sklenar SA (2000). Effects of nutrient enrichment and large predator removal on seagrass nursery habitats: an experimental assessment. Limnol Oceanogr 45:1041–1057

    Article  CAS  Google Scholar 

  • Hellblom F, Bjork M (1999) Photosynthetic responses in Zostera marina to decreasing salinity, inorganic carbon content and osmolarity. Aquat Bot 65:97–104

    Article  CAS  Google Scholar 

  • Isaksson I, Pihl L (1992) Structual changes in benthic macrovegetation and associated epibenthic faunal communities. Neth J Sea Res 30:131–140

    Article  Google Scholar 

  • Jacobs (1982) The annual pattern of the diatoms in the epiphyton of eelgrass (Zostera marina L.) at Roscoff, France. Aquat Bot 8:355–370

    Google Scholar 

  • Jansson B-O (1978) The Baltic-a system analysis of a semi-enclosed sea. In: Charnock H, Deacon G (eds) Advances in oceanography. Plenum Press, New York, pp 131–183

    Chapter  Google Scholar 

  • Jernakoff P, Brearley A, Nielsen J (1996) Factors affecting grazer-epiphyte interactions in temperate seagrass meadows. Oceanogr Mar Biol Ann Rev 34:109–162

    Google Scholar 

  • Kautsky H, Van der Maarel E (1990) Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea. Mar Ecol Prog Ser 60:169–184

    Article  Google Scholar 

  • Kruk-Dowgiallo L (1991) Long-term changes in the structure of underwater meadows of the Puck Lagoon. Acta Ichtyol Piscator 22:77–84

    Google Scholar 

  • Lapointe BE, Tomasko DA, Matzie WR (1994) Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bull Mar Sci 54(3):696–717

    Google Scholar 

  • Lappalainen A, Hallfors G, Kangas P (1977) Littoral benthos of the northern Baltic Sea. IV. Pattern and dynamics of macrobenthos in a sandy-bottom Zostera marina community in Tvarminne. Int Rev Ges Hydrobiol 62:465–503

    Article  Google Scholar 

  • Leppakoski E, Bonsdorff E (1989) Ecosytem variability and gradients. Examples from the Baltic Sea as a background for hazard assessment. In: Landner L (ed) Chemicals in the aquatic environment-advanced hazard assessment. Springer, Berlin Heidelberg New York, pp 6–58

    Google Scholar 

  • Leppakoski E, Helminen H, Hanninen J, Tallqvist M (1999) Aquatic biodiversity under anthropogenic stress: an insight from the Archipelago Sea (SW Finland). Biodiv Conserv 8:55–70

    Article  Google Scholar 

  • Lotze H (1998) Population dynamics and species interactions in macro algal blooms: abiotic versus biotic control at different life-cycle stages. Berichte aus dem Inst fur Meereskunde, PhD Thesis. Christian-Albrechts-Universitat, Kiel, 134 pp

    Google Scholar 

  • Luther H (1951) Verbreitung und Ökologie der hoheren Wasserpflanzen im Brackwasser der Ekenas-Gegend in Sudfinnland. I. Allgemeiner Teil. Acta Bot Fenn 49:1–231

    Google Scholar 

  • Mathiesen I, Nielsen J (1956) Botaniske undersøgelser i Randers fjord og Grund Fjord (Botanical investigations in the fjords of Randers and Grund). Bot Tidskr 53:1–34 (English summary)

    Google Scholar 

  • Mattila J (1995) Does habitat complexity give refuge against fish predation? Some evidence from two field experiments. In: Eleftheriou A, Ansell AD, Smith CJ (eds) Biology and ecology of shallow coastal waters. Proc 28th Eur Mar Biol Symp. Olsen and Olsen, Fredensborg, pp 261–268

    Google Scholar 

  • Mattila J, Chaplin G, Eilers MR, Heck KL Jr, O’Neal JP, Valentine JF (1999) Spatial and diurnal distribution of invertebrate and fish fauna of a Zostera marina bed and nearby unvegetated sediments in Damariscotta River, Maine (USA). J Sea Res 41:321–332

    Article  Google Scholar 

  • Möller P (1986) Physical factors and biological interactions regulating infauna in shallow boreal areas. Mar Ecol Prog Ser 30:33–47

    Article  Google Scholar 

  • Möller P, Pihl L, Rosenberg R (1985) Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Mar Ecol Prog Ser 27:109–121

    Article  Google Scholar 

  • Nelson WG (1979) An analysis of structural pattern in an eelgrass (Zostera marina L.) amphipod community. J Exp Mar Biol Ecol 39:231–264

    Article  Google Scholar 

  • Nelson WG (1981) Experimental studies of decapod and fish predation on seagrass macrobenthos. Mar Ecol Prog Ser 5:141–149

    Article  Google Scholar 

  • Nielsen R, Kristiansen A, Mathiesen M, Mathiesen H (1995) Distributional index of the benthic macroalgae of the Baltic Sea area. Acta Bot Fenn 155:1–51

    Google Scholar 

  • Norkko A, Bonsdorff E (1996) Population responses of coastal zoobenthos to stress induced by drifting algae. Mar Ecol Prog Ser 140:141–151

    Article  Google Scholar 

  • Ohlsson M, Andersson L (1990) Recent investigation of total carbonate in the Baltic Sea: changes from the past as a result of acid rain? Mar Chem 30:259–267

    Article  Google Scholar 

  • Orth RJ (1973) Benthic infauna of eelgrass, Zostera marina, beds. Chesapeake Sci 14:258–269

    Article  Google Scholar 

  • Orth RJ, Heck KL, Van Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7(4A):339–350

    Article  Google Scholar 

  • Phillippart (1995) Seasonal variation growth and biomass of an intertidal Zostera noltii stand in the Dutch Wadden Sea. Neth J Sea Res 33(2):205–218

    Google Scholar 

  • Phillips RC, Menez EG (1988) Seagrasses. Smithsonian Contrib Mar Sci 34:1-104

    Google Scholar 

  • Pihl L, Rosenberg R (1982) Production, abundance and biomass of mobile epibenthic marine fauna in shallow waters, western Sweden. J Exp Mar Biol Ecol 57:273–301

    Article  Google Scholar 

  • Pihl L, Svenson A, Moksnes P-O, Wennhage H (1999) Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure. J Sea Res 41:281–294.

    Article  Google Scholar 

  • Pinnerup SP (1980) Leaf production of Zostera marina L. at different salinities. Ophelia Suppl 1:219–224

    Google Scholar 

  • Remane (1934) Die Brackwasserfauna. Verh Dt Zool Ges 36:34–74

    Google Scholar 

  • Reusch TBH (1994) Factors structuring the Mytilus-and Zostera community in the western Baltic. An experimental approach. PhD thesis, Christian-Albrechts-Universität, Kiel, 162 pp

    Google Scholar 

  • Reusch TBH (1998) Differing effects of eelgrass Zostera marina on recruitment and growth of associated blue mussels Mytilus edulis. Mar Ecol Prog Ser 167:149–153

    Article  Google Scholar 

  • Reusch TBH, Chapman ARO (1995) Storm effects on eelgrass (Zostera marina L.) and the blue mussel (Mytilus edulis L.) beds. J Exp Mar Biol Ecol 192:257–271

    Article  Google Scholar 

  • Reusch TBH, Chapman ARO, Gröger JP (1994) Blue mussels (Mytilus edulis) do not interfere with eelgrass (Zostera marina) but fertilize shoot growth through biodeposition. Mar Ecol Prog Ser 108:265–282

    Article  Google Scholar 

  • Reusch TBH, Boström C, Starn WT, Olsen JL (1999a) An ancient eelgrass clone in the Baltic. Mar Ecol Prog Ser 183:301–304

    Article  Google Scholar 

  • Reusch TBH, Starn WT, Olsen JL (1999b) A micro-satellite based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol Ecol 9:127–140

    Article  Google Scholar 

  • Roos C (2000) A seasonal study of the production fo eelgrass (Zostera marina L.) at two sites in the northern Baltic Sea. MSc-thesis, Åbo Akademi University, 56 pp (in Swedish with English abstract

    Google Scholar 

  • Robertson AI (1984) Trophic inteactions between the fish fauna and macrobenthos of an eelgrass community in Western Port, Victoria. Aquat Bot 18: 135–153

    Article  Google Scholar 

  • Rumohr H, Bonsdorff E, Pearson TH (1996) Zoobenthic succession in Baltic sedimentary habitats. Arch Fish Mar Res 44:179–214

    Google Scholar 

  • Russell G (1985) Recent evolutionary changes in the algae of the Baltic Sea. Br Phycol J 20:87–104

    Article  Google Scholar 

  • Russell G (1987) Salinity and seaweed vegetation. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell, Oxford, pp 35–52

    Google Scholar 

  • Russell G (1988) The seaweed flora of a young semi-enclosed sea: The Baltic. Salinity as a possible agent of flora divergence. Helgoländer Meeresunters 42:243–250

    Article  Google Scholar 

  • Russo AR (1987) Role of habitat complexity in mediating predation by the grey damselfish Abudefduf sordidus on epiphytal amphipods. Mar Ecol Prog Ser 36:101–105

    Article  Google Scholar 

  • Ryer CH (1988) Pipefish foraging and the effects of altered habitat complexity. Mar Ecol Prog Ser 48:37–45

    Article  Google Scholar 

  • Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Schramm W (1996) The Baltic Sea and its transitions zones. In: Schramm W, Nienhuis PH (eds) Marine benthic vegetation-recent changes and the effects of eutrophication. Springer, Berlin Heidelberg New York, pp 131–163

    Google Scholar 

  • Seed R (1992) Systematics evolution and distribution of mussels belonging to the Genus Mytilus: an overview. Am Malacol Bull 9:123–137

    Google Scholar 

  • Setchell (1929) Morphological and phenological notes on Zostera marina L. Univ Calif Publ Bot 14:289–452

    Google Scholar 

  • Short FT (1983a) The response of interstitial ammonium in eelgrass (Zostera marina L.) beds to environmental perturbations. J Exp Mar Biol Ecol 68:195–208

    Article  CAS  Google Scholar 

  • Short FT (1983b) The seagrass, Zostera marina L.: plant morphology and bed structures in relation to sediment ammonium in Izembek lagoon, Alaska. Aquat Bot 16:149–161

    Article  Google Scholar 

  • Sillanpää H (2001) The importance of Zostera marina L. meadows for fish in the northern Baltic Sea-a methodological approach. MSc-thesis, Abo Akademi University, 45 pp

    Google Scholar 

  • Simenstad CA, Reed DJ, Jay DA, Baross JA, Prahl FG, Small LF (1994) Land-margin ecosystem research in the Columbia River estuary: an interdisciplinary approach to investigating couplings between hydrological, geochemical and ecological processes within an estuarine turbidity maxima. In: Dyer KR, Orth RJ (eds) Changes in fluxes in estuaries: implications from science to management (ECSA22/ERF symposium). Olsen and Olsen, Fredensborg, Denmark, pp 437–444

    Google Scholar 

  • Snoeijs P (1999) Marine and brackish waters. Acta Phytogeogr Suec 84:187–212

    Google Scholar 

  • Stevenson JC (1988) Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments. Limnol Oceanogr 33:867–893

    Article  CAS  Google Scholar 

  • Summerson HC, Peterson CH (1984) Role of predation in organizing benthic communities of a temperate-zone seagrass bed. Mar Ecol Prog Ser 15:63–77

    Article  Google Scholar 

  • Stoner AW (1980) The role of seagrass biomass in the organisation of benthic macrofaunal assemblages. Bull Mar Sci 30:537–551

    Google Scholar 

  • Tedengren M (1990) Ecophysiology and pollution sensitivity of Baltic Sea invertebrates. PhD thesis, Stockholm University

    Google Scholar 

  • Tedengren M, Kautsky N (1986) Comparative study of the physiology and its probable effect on size in blue mussels (Mytilus edulis L.) from the North Sea and the northern Baltic proper. Ophelia 25(3):147–155

    Article  Google Scholar 

  • Tedengren M, André C, Johannesson K, Kautsky N (1990) Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. III. Physiology. Mar Ecol Prog Ser 59:221–229

    Article  Google Scholar 

  • Tomasko DA, Lapointe BE (1991) Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: Field observations and experimental studies. Mar Ecol Prog Ser 75:9–17

    Article  Google Scholar 

  • Väinölä R, Hvilsom MM (1991) Genetic divergence and a hybrid zone between Baltic and North Sea Mytilus populations (Mytilidae, Mollusca). Biol J Linn Soc 43:127–148

    Article  Google Scholar 

  • Van Montfrans J, Wetzel RL, Orth RJ (1984) Epiphyte-grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7:289–309

    Article  Google Scholar 

  • Wallentinus I (1991) The Baltic Sea gradient. In: Matthieson AC, Nienhuis PH (eds) Ecosystems of the world, vol 24. Intertidal and littoral ecosystems. Elsevier, Amsterdam, pp 83–108

    Google Scholar 

  • Ward LG, Kemp WM, Boynton WR (1984) The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar Geol 59:85–108

    Article  Google Scholar 

  • Williams SL, Ruckelshaus MH (1993) Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecology 74:904–918

    Article  Google Scholar 

  • Wium-Andersen S, Borum J (1980) Biomass and production of eelgrass (Zostera marina L.) in the Øresund, Denmark. Ophelia Suppl 1:49–55

    Google Scholar 

  • Worm B, Reusch TBH (2000) Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Mar Ecol Prog Ser 200:158–166

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baden, S.P., Boström, C. (2001). The Leaf Canopy of Seagrass Beds: Faunal Community Structure and Function in a Salinity Gradient Along the Swedish Coast. In: Reise, K. (eds) Ecological Comparisons of Sedimentary Shores. Ecological Studies, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56557-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56557-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62517-6

  • Online ISBN: 978-3-642-56557-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics