Skip to main content

A Closer Look at the Visual Input to Self-Motion Estimation

  • Chapter
Motion Vision

Abstract

In their Chapter, Dahmen et al. use an interesting approach to the self-motion (egomotion) estimation problem that combines traditional vector flow field decomposition schemes with a matched filter (template) scheme. In the field of visual self-motion perception these two approaches represent two different schools of thought about how biological systems solve the self-motion problem. The boundaries between these classes of models occasionally become blurred but there is one feature that distinguishes these two approaches and which can be used to assess their pros and cons: namely the type of input they are designed to process. In this section I examine the different input requirements of the two model types and identify some of the challenges that are faced by modellers in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Albright TD (1984) Direction and orientation selectivity of neurons in visual area MT of the Macaque. J Neurophysiol 52: 1106–1130

    PubMed  CAS  Google Scholar 

  • Beintema JA, van den Berg AV (1998) Heading detection using motion templates and eye velocity gain fields. Vision Res 38: 2155–2179

    Article  PubMed  CAS  Google Scholar 

  • Cutting JE (1986) Perception with an eye for motion. Bradford, Cambridge

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65: 1329–1345

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65: 1346–1359

    PubMed  CAS  Google Scholar 

  • Dyre BP, Andersen GJ (1994) Statistical moments of retinal flow may be used to determine heading. Invest Ophthalmol Vis Sci 35: S 1269

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 53–77

    Google Scholar 

  • Glünder H (1990) Correlative velocity estimation: Visual motion analysis, independent of object form, in arrays of velocity-tuned bilocal detectors. J Opt Soc Am A 7: 255–263

    Article  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Hatsopoulos N, Warren WH (1991) Visual navigation with a neural network. Neural Networks 4: 303–317

    Article  Google Scholar 

  • Hausen K (1993) Decoding of retinal image flow in insects. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 203–235

    Google Scholar 

  • Heeger DJ, Jepson AD (1992) Subspace methods for recovering rigid motion I: Algorithm and implementation. Int J Comp Vision 7: 95–177

    Article  Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149: 179–193

    Article  Google Scholar 

  • Hildreth EC (1983) The computation of the velocity field. Proc Roy Soc Lond B 221: 189–220

    Article  Google Scholar 

  • Hildreth EC (1992) Recovering heading for visually-guided navigation. Vision Res 32: 1177–1192

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, van Doom AJ (1975) Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Opt Acta 22: 773–791

    Article  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 463–466

    Article  PubMed  CAS  Google Scholar 

  • Lagae S, Raiguel S, Orban GA (1993) Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol 69: 19–39

    PubMed  CAS  Google Scholar 

  • Lappe M, Rauschecker JP (1993) A neural network for the processing of optic flow from ego-motion in man and higher mammals. Neural Comput 5: 374–391

    Article  Google Scholar 

  • Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: A theoretical and experimental approach. J Neurosci 16: 6265–6285

    PubMed  CAS  Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of moving retinal images. Proc Roy Soc Lond B 208: 385–387

    Article  CAS  Google Scholar 

  • Maunsell JHR, van Essen DC (1983) Functional properties of neurons in the middle temporal visual area of the Macaque monkey. I. Selectivity for stimulus direction, speed, orientation. J Neurophysiol 49: 1127–1147

    PubMed  CAS  Google Scholar 

  • Nowlan SJ, Sejnowski TJ (1995) A selection model for motion processing in area MT of primates. J Neurosci 15: 1195–1214

    PubMed  CAS  Google Scholar 

  • Perrone JA (1987) Extracting 3-D egomotion information from a 2-D flow field: A biological solution? Opt Soc Am Tech Digest Series 22: 47

    Google Scholar 

  • Perrone JA (1990) Simple technique for optical flow estimation. J Opt Soc Am A 7: 264–278

    Article  Google Scholar 

  • Perrone JA (1992) Model for the computation of self-motion in biological systems. J Opt Soc Am A 9: 177–194

    Article  PubMed  CAS  Google Scholar 

  • Perrone JA (1997) Extracting observer heading and scene layout from image sequences. Invest Ophthalmol Vis Sci 38: S 481

    Google Scholar 

  • Perrone JA, Stone LS (1994) A model of self-motion estimation within primate extrastriate visual cortex. Vision Res 34: 2917–2938

    Article  PubMed  CAS  Google Scholar 

  • Perrone JA, Stone LS (1998) Emulating the visual receptive field properties of MST neurons with a template model of heading estimation. J Neurosci 18: 5958–5975

    PubMed  CAS  Google Scholar 

  • Regan D, Beverley KI (1978) Looming detectors in the human visual pathway. Vision Res 18: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Rieger JH, Lawton DT (1985) Processing differential image motion. J Opt Soc Am A 2: 354–360

    Article  PubMed  CAS  Google Scholar 

  • Rieger JH, Toet L (1985) Human visual navigation in the presence of 3D rotations. Biol Cybern 52: 377–381

    Article  PubMed  CAS  Google Scholar 

  • Royden CS (1997) Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. J Opt Soc Am A 14: 2128–2143

    Article  CAS  Google Scholar 

  • Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the Macaque monkey. J Neurosci 6: 145–157

    PubMed  CAS  Google Scholar 

  • Sereno ME (1993) Neural computation of pattern motion: modeling stages of motion analysis in the primate visual cortex. MIT Press, Cambridge, Mass

    Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38: 743–761

    Article  PubMed  CAS  Google Scholar 

  • Stone LS, Perrone JA (1997) Human heading estimation during visually simulated curvilinear motion. Vision Res 37: 573–590

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Hikosaka K, Saito H, Yukie, M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6: 134–144

    PubMed  CAS  Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of the motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62: 626–641

    PubMed  CAS  Google Scholar 

  • Wallach H (1935) Ãœber visuell wahrgenommene Bewegungsrichtung. Psychol Forsch 20: 325–380

    Article  Google Scholar 

  • Warren WH, Hannon DJ (1990) Eye movements and optical flow. J Opt Soc Am A 7: 160–168

    Article  PubMed  Google Scholar 

  • Yuille AL, Gryzywacz NM (1988) A computational theory for the perception of coherent visual motion. Nature 333: 71–74

    Article  PubMed  CAS  Google Scholar 

  • Zacharias GL, Caglayan AK, Sinacori JB (1985) A visual cueing model for terrain-following applications. J Guidance 8: 201–207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perrone, J.A. (2001). A Closer Look at the Visual Input to Self-Motion Estimation. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics