Skip to main content

Extracting Egomotion from Optic Flow: Limits of Accuracy and Neural Matched Filters

  • Chapter
Book cover Motion Vision

Abstract

In this chapter we review two pieces of work aimed at understanding the principal limits of extracting egomotion parameters from optic flow fields (Dahmen et al. 1997) and the functional significance of the receptive field organization of motion sensitive neurones in the fly’s visual system (Franz and Krapp 1999). In the first study, we simulated noisy image flow as it is experienced by an observer moving through an environment of randomly distributed objects for different magnitudes and directions of simultaneous rotation R and translation T. Estimates R’ of the magnitude and direction of R and t’ of the direction of T were derived from samples of this perturbed image flow and were compared with the original vectors using an iterative procedure proposed by Koenderink and van Doom (1987). The sampling was restricted to one or two cone-shaped subregions of the visual field, which had variable angular size and viewing directions oriented either parallel or orthogonal with respect to the egomotion vectors R and T. We also investigated the influence of environmental structure, such as various depth distributions of objects and the role of planar or spherical surfaces. From our results we derive two general rules how to optimize egomotion estimates: (i) Errors are minimized by expanding the field of view. (ii) Sampling image motion from opposite directions improves the accuracy, particularly for small fields of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanke H, Varjã D (1995) Visual determination of self motion components: Regionalization of the optomotor response in the backswimmer Notonecta. In: Elsner N, Menzel R (eds) Nervous systems and behaviour. Proc 23rd Göttingen Neurobiol Conf. Thieme, Stuttgart, p 265

    Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2: 5–18

    Article  PubMed  CAS  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24: 85–101

    Article  Google Scholar 

  • Chahl JS, Srinivasan MV (1997) Reflective surfaces for panoramic imaging. Appl Optics 36: 8275–8285

    Article  CAS  Google Scholar 

  • Dahmen H (1991) Eye specialization in waterstriders: an adaptation to life in a flat world. J Comp Physiol A 169: 623–632

    Article  Google Scholar 

  • Dahmen H, Wüst RW, Zeil J (1997) Extracting egomotion parameters from optic flow: principal limits for animals and machines. In: Srinivansan MV, Venkatesh S (eds) From living eyes to seeing machines. Oxford University Press, Oxford, New York, pp 174–198

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, London, pp 53–77

    Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol Cybern: in press

    Google Scholar 

  • Franz MO, Schölkopf B, Mallot HA, Bülthoff HH (1998) Where did I take that snapshot? Scene-based homing by image matching.79: 191–202

    Google Scholar 

  • Frost B (1993) Subcortical analysis of visual motion: Relative motion, figure-ground discrimination and self induced optic flow. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, London, pp 159–175

    Google Scholar 

  • Gibson JJ (1950) The Perception of the Visual World. Houghton Mifflin, Boston.

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybern 35: 101–112

    Article  Google Scholar 

  • Götz KG, Wandel U (1984) Optomotor control of the force of flight in Drosophila and Musca. Biol Cybern 51: 135–139

    Article  Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981: 49–70

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol Cybem 46: 67–79

    Article  Google Scholar 

  • Hausen K (1984) The lobula complex of the fly: structure, function and significance in visual behaviour. In Ali MA(ed) Photoreception and vision in invertebrates. Plenum, New York, London, pp 523–559

    Chapter  Google Scholar 

  • Hausen K (1993) The decoding of retinal image flow in insects. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, London, pp 203–235

    Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer Verlag, Berlin, Heidelberg, pp 391–424

    Google Scholar 

  • Heeger DJ, Jepson AD (1992) Subspace methods for recovering rigid motion I: Algorithim and implementaion. Int J Comp Vis 7: 95–117

    Article  Google Scholar 

  • Hengstenberg R (1981) Rotatory visual responses of vertical cells in the lobula plate of Calliphora. Verh Dtsch Zool Ges 1981: 180

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149: 179–193

    Article  Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J Comp Physiol A 149: 163–177

    Article  Google Scholar 

  • Junger W, Dahmen HJ (1991) Response to self-motion in waterstriders: visual discrimination between rotation and translation. J Comp Physiol A 169: 641–646

    Google Scholar 

  • Kern R, Nalbach HO, Varjã D (1993). Interaction of local movement detectors enhance the detection of rotation. Optokinetic experiments with the rock crab Pachygrapsus marmoratus. Visual Neurosci 10: 643–52

    Article  CAS  Google Scholar 

  • Koenderink JJ (1986) Optic flow. Vision Res 26: 161–190

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56: 247–54

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg, R (1997) A fast stimulus procedure for determining local receptive field properties of motion-sensitive visual interneurons. Vision Res 37: 225–234

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing intemeurons in the fly. J Neurophysiol 79: 1902–1917

    PubMed  CAS  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Ann Rev Entomol. 42: 147–177

    Article  CAS  Google Scholar 

  • Lappe M (1999) Neuronal processing of optic flow. Int Rev Neurobiol 44. Academic Press, San Diego

    Google Scholar 

  • Lappe M, Bremmer F, van den Berg AV (1999) Perception of self-motion from optic flow. Trends Cog Sci 3: 329–336

    Article  Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc Roy Soc Lond B 208: 385–97

    Article  CAS  Google Scholar 

  • Miles FA, Wallman J (1993) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, London, New York, Tokyo

    Google Scholar 

  • Nagle MG, Srinivasan MV, Wilson DL (1997) Image interpolation technique for measurement of egomotion in 6 degrees of freedom. J Opt Soc Am A 14: 3233–3241

    Article  Google Scholar 

  • Nalbach H-O (1990) Multisensory control of eye stalk orientation in decapod crustaceans. An ecological approach. J Crust Biol 10: 382–399

    Article  Google Scholar 

  • Nalbach H-O, Zeil J, Forzin L (1989) Multisensory control of eye-stalk orientation in space: Crabs from different habitats rely on different senses. J Comp Physiol A 165: 643–649

    Article  Google Scholar 

  • Nelson RC, Aloimonos J (1988) Finding motion parameters from spherical motion fields (or the advantage of having eyes in the back of your head). Biol Cybern 58: 261–218

    Article  PubMed  CAS  Google Scholar 

  • Oyster CW, Takahashi ES, Collewijn H. (1972) Directional-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res 12: 183–193

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161: 533–547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dahmen, HJ., Franz, M.O., Krapp, H.G. (2001). Extracting Egomotion from Optic Flow: Limits of Accuracy and Neural Matched Filters. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics