Skip to main content

Pathways in Dipteran Insects for Early Visual Motion Processing

  • Chapter
Motion Vision

Abstract

In insects, as in vertebrates, neuroanatomical, electrophysiological, and modelling studies have provided insights regarding identities and connections among neurones that accomplish elementary motion detection. These studies include intracellular recordings from identified wide-field neurones that collate local information about motion, intracellular recordings from identified, mainly non-spiking small-field neurones that are candidates for a cardinal role in motion detection, and comparative anatomical studies of retinotopic neurones that are evolutionarily conserved across taxa. Nevertheless, many important features of motion processing in insects have yet to be revealed. This review concentrates on two questions: what are the identities and relationships among neurones that participate in elementary motion detection? And, are there distinct functional classes of elementary motion detectors (EMDs) in insects?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1990) Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. Proc Natl Acad Sci USA 87: 9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Brotz TM, Borst A (1996) Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. J Neurophysiol 76: 1786–1799

    PubMed  CAS  Google Scholar 

  • Buchner E, Buchner S (1984) Neuroanatomical mapping of visually induced nervous activity in insects by 3H-deoxyglucose. In Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, London, pp 623–634

    Chapter  Google Scholar 

  • Buchner E, Buchner S, Bülthoff I (1984) Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J Comp Physiol A 155: 471–483

    Article  Google Scholar 

  • Buschbeck EK, Strausfeld NJ (1996) Visual motion detection circuits in flies: Small-field retinotopic elements responding to motion are evolutionarily conserved across taxa. J Neurosci 16: 4563–4578

    PubMed  CAS  Google Scholar 

  • Buschbeck EK, Strausfeld NJ (1997) The relevance of neural architecture to visual performance: Phylogenetic conservation and variation in dipteran visual systems. J Comp Neurol 383: 282–304

    Article  PubMed  CAS  Google Scholar 

  • Cajal SR (1888) Sur la morphologie et les connexions des éléments de la rétine des oiseaux. Anat Anz 4: 111–121

    Google Scholar 

  • Cajal SR, Sánchez D (1915) Contribución al conocimiento de los centros nerviosos de los insectos. Parte I. Retina y centros opticos. Trab Lab Invest Biol Univ Madrid 13: 1–167

    Google Scholar 

  • Campos-Ortega JA, Strausfeld NJ (1973) Synaptic connections of intrinsic cells and basket arborisations in the external plexiform layer of the fly’s eye. Brain Res 59: 110–136

    Article  Google Scholar 

  • Coombe P, Srinivasan MV, Guy RG (1989). Are the large monopolar cells of the insect lamina on the optomotor pathway? J Comp Physiol A 166: 23–35

    Article  Google Scholar 

  • Datum K-H, Weiler R, Zettler F (1986) Immunocytochemical demonstration of y-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibers in the blowfly visual system. J Comp Physiol A 159: 241–249

    Article  CAS  Google Scholar 

  • David CT (1982) Compensation for height in the control of groundspeed by Drosophila in a new, “Barber’s Pole” wind tunnel. J Comp Physiol 147: 485–493

    Article  Google Scholar 

  • Dorlochter M, Stieve H (1997) The Limulus ventral photoreceptor: Light response and the role of calcium in a classic preparation. Prog Neurobiol 53: 451–515

    Article  PubMed  CAS  Google Scholar 

  • Douglass JK, Strausfeld NJ (1995) Visual motion detection circuits in flies: Peripheral motion computation by identified small-field retinotopic neurons. J Neurosci 15: 5596–5611

    PubMed  CAS  Google Scholar 

  • Douglass JK, Strausfeld NJ (1996) Visual motion-detection circuits in flies: Parallel direction-and non-direction-sensitive pathways between the medulla and lobula plate. J Neurosci 16: 4551–4562

    PubMed  CAS  Google Scholar 

  • Douglass JK, Strausfeld NJ (1998) Functionally and anatomically segregated visual pathways in the lobula complex of a calliphorid fly. J Comp Neurol 396: 84–104

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1992) Are there separate ON and OFF channels in fly motion vision? Visual Neurosci 8: 151–164

    Article  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993) A look into the cockpit of the fly: Visual orientation, algorithms, and identified neurons. J Neurosci 13: 4573–4574

    Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6: 1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends in Neurosci 8: 351–358

    Article  Google Scholar 

  • Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258: 441–475

    Article  Google Scholar 

  • Gilbert C, Penisten DK, DeVoe RD (1991) Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata. J Comp Physiol A 168: 653–673

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Strausfeld NJ (1991) The functional organization of male-specific visual neurons in flies. J Comp Physiol A 169: 395–411

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W, Strausfeld NJ (1991) Descending pathways connecting the male-specific visual system of flies to the neck and flight motor. J Comp Physiol A 169: 413–426

    Article  PubMed  CAS  Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981: 49–70

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen, K. (1993) Decoding of retinal image flow in insects. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 203–235

    Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol 149: 179–193

    Article  Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly (Calliphora erythrocephala). J Comp Physiol 149: 163–177

    Article  Google Scholar 

  • Horridge GA, Marcelja L (1992) On the existence of `fast’ and `slow’ directionally sensitive motion detector neurons in insects. Proc Roy Soc Lond B 248: 47–54

    Article  CAS  Google Scholar 

  • Laughlin S (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Handbook of Sensory Physiology VII/6B. Springer, Berlin, pp 133–280

    Chapter  Google Scholar 

  • Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305: 232–263

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll DC, Laughlin SB, Bidwell NJ, Harris SJ (1997) Spatio-temporal properties of motion detectors matched to low image velocities in hovering insects. Vision Res 37: 3427–3439

    Article  PubMed  Google Scholar 

  • Pick B, Buchner E (1979) Visual movement detection under light-an dark-adaptation in the fly Musca domestica. J Comp Physiol 134: 45–54

    Article  Google Scholar 

  • Riehle A, Franceschini N (1982) Response of a directionally selective movement detecting neuron under precise stimulation of two identified photoreceptor cells. Neurosci Lett Suppl 10: 5411–5412

    Google Scholar 

  • Schuling FH, Mastebroek HAK, Bult R, Lenting BPM (1989) Properties of elementary movement detectors in the fly Calliphora erythrocephala. J Comp Physiol A 165: 179–192

    Article  Google Scholar 

  • Schuster R, Phannavong B, Schröder C, Gundelfinger ED (1993) Immunohistochemical localization of a ligand-binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster. J Comp Neurol 335: 149–162

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Dvorak DR (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J Comp Physiol 140: 1–23

    Article  Google Scholar 

  • Srinivasan MV, Lehrer M, Kirchner WH, Zhang SW (1991) Range perception through apparent image speed in freely flying honeybees. Visual Neurosci 6: 519–535

    Article  CAS  Google Scholar 

  • Srinivasan MV, Zhang SW, Chandrashekara K (1993) Evidence for two distinct movement-detecting mechanisms in insect vision. Naturwiss 80: 38–41

    Article  Google Scholar 

  • Strausfeld NJ (1970) Golgi studies on insects. Part II. The optic lobes of Diptera. Phil Trans Roy Soc B 258: 175–223

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Heidelberg

    Book  Google Scholar 

  • Strausfeld NJ (1991) Structural organization of male-specific visual neurons in calliphorid optic lobes. J Comp Physiol A 169: 379–393

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Blest AD (1970) Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil Trans Roy Soc Lond B 258: 81–134

    Article  CAS  Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1972) Some interrelationships between the first and second synaptic regions of the fly’s (Musca domestica L) visual system. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Heidelberg, Berlin, pp 23–30

    Chapter  Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1973) The L4 monopolar neuron: a substrate for lateral interaction in the visual system of the fly Musca domestica. Brain Res 59: 97–117

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Campos-Ortega JA (1977) Vision in insects: Pathways possibly underlying neural adaptation and lateral inhibition. Science 195: 894–897

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Lee J-K (1991) Neuronal basis for parallel visual processing in the fly. Visual Neurosci 7: 13–33

    Article  CAS  Google Scholar 

  • Strausfeld NJ, Nässel DR (1980) Neuroarchitectures serving compound eyes of Crustacea and insects. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. VIUB. Springer, Berlin, pp 1–132

    Google Scholar 

  • Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L (1995) Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways. J Comp Neurol 361: 298–320

    Article  PubMed  CAS  Google Scholar 

  • Zanker JM, Srinivasan MV, Egelhaaf M (1999) Speed tuning in elementary motion detectors of the correlation type. Biol Cybern 80: 109–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Douglass, J.K., Strausfeld, N.J. (2001). Pathways in Dipteran Insects for Early Visual Motion Processing. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics