Skip to main content

Direction-Selective Ganglion Cells in the Retina

  • Chapter
Motion Vision

Abstract

The first stages in the neuronal processing of image motion take place within the retina. Some types of ganglion cells, which are the output neurones of the retina, are strongly stimulated by image movement in one direction, but are inhibited by movement in the opposite direction. Such direction selectivity represents an early level of complex visual processing which has been intensively studied from morphological, physiological, pharmacological and theoretical perspectives. Although this computation is performed within two or three synapses of the sensory input, the cellular locus and the synaptic mechanisms of direction selectivity have yet to be elucidated.

The classic study by Barlow and Levick (1965) characterized the receptive-field properties of direction-selective (DS) ganglion cells in the rabbit retina and established that there are both inhibitory and facilitatory mechanisms underlying the direction selectivity. In each part (“subunit”) of the receptive field, apparent-motion experiments indicated that a spatially asymmetric, delayed or long-lasting inhibition “vetoes” excitation for movement in one direction (the “null” direction), but not for movement in the opposite direction (the “preferred” direction). In addition, facilitation of excitatory inputs occurs for movement in the preferred direction.

Subsequently, pharmacological experiments indicated that a GABAergic input from lateral association neurones (amacrine cells) may inhibit an excitatory cholinergic input from other amacrine cells and/or a glutamatergic input from second-order intemeurones (bipolar cells). An added complication is that the cholinergic amacrine cells also synthesize and contain GABA, raising the possibility that these “starburst” cells mediate both the excitation and inhibition underlying direction selectivity (Vaney et al. 1989).

This review focuses on recent studies that shed light on the cellular mechanisms that underlie direction selectivity in retinal ganglion cells. He and Masland (1997) have provided compelling evidence that the cholinergic amacrine cells mediate the facilitation elicited by motion in the preferred direction; however, it now appears that the cholinergic facilitation is non-directional, although the null-direction facilitation is normally masked by the directional inhibitory mechanism. The null-direction inhibition may act presynaptically on the excitatory input to the DS ganglion cell; in this case, the release of transmitter from the excitatory neurone would itself be direction selective, at least locally. Alternatively, the null-direction inhibition may act postsynaptically on the ganglion cell dendrites, probably through the non-linear mechanism of shunting inhibition.

In the rabbit retina, there are two distinct types of DS ganglion cells which respond with either On-Off or On responses to flashed illumination; the two types also differ in their specificity for stimulus size and speed and their central projections. The On-Off DS cells comprise four physiological subtypes, whose preferred directions are aligned with the horizontal and vertical ocular axes, whereas the On DS cells comprise three physiological subtypes, whose preferred directions correspond to rotation about the best response axes of the three semicircular canals in the inner ear. The On DS cells, which project to the accessory optic system, appear to respond to global slippage of the retinal image, thus providing a signal that drives the optokinetic reflex. The On-Off DS cells, which are about ten times more numerous than the On DS cells, appear to signal local motion and they may playa key role in the representation of dynamic visual space or the detection of moving objects in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amthor FR, Grzywacz NM (1993a) Directional selectivity in vertebrate retinal ganglion cells. In: Miles, FA, Waliman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 79–100

    Google Scholar 

  • Amthor FR, Grzywacz NM (1993b) Inhibition in ON-OFF directionally selective ganglion cells of the rabbit retina. J Neurophysiol 69: 2174–2187

    CAS  Google Scholar 

  • Amthor FR, Grzywacz NM (1994) Morphological and physiological basis of starburst-ACh amacrine input to directionally selective (DS) ganglion cells in rabbit retina. Soc Neurosci Abstr 20: 217

    Google Scholar 

  • Amthor FR, Oyster CW (1995) Spatial organization of retinal information about the direction of image motion. Proc Natl Acad Sci USA 92: 4002–4005

    Article  PubMed  CAS  Google Scholar 

  • Amthor FR, Oyster CW, Takahashi ES (1984) Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Res 298: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Amthor FR, Takahashi ES, Oyster CW (1989a) Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J Comp Neurol 280: 72–96

    Article  CAS  Google Scholar 

  • Amthor FR, Takahashi ES, Oyster CW (1989b) Morphologies of rabbit retinal ganglion cells with complex receptive fields. J Comp Neurol 280: 97–121

    Article  CAS  Google Scholar 

  • Amthor FR, Grzywacz NM, Merwine DK (1996) Extra-receptive-field motion facilitation in on-off directionally selective ganglion cells of the rabbit retina. Vis Neurosci 13: 303–309

    Article  PubMed  CAS  Google Scholar 

  • Ariel M, Adolph AR (1985) Neurotransmitter inputs to directionally sensitive turtle retinal ganglion cells. J Neurophysiol 54: 1123–1143

    PubMed  CAS  Google Scholar 

  • Ariel M, Daw NW (1982) Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. J Physiol 324: 161–185

    PubMed  CAS  Google Scholar 

  • Baldridge WH (1996) Optical recordings of the effects of cholinergic ligands on neurons in the ganglion cell layer of mammalian retina. J Neurosci 16: 5060–5072

    PubMed  CAS  Google Scholar 

  • Barlow HB, Hill RM (1963) Selective sensitivity to direction of motion in ganglion cells of the rabbit’s retina. Science 139: 412–414

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178: 477–504

    PubMed  CAS  Google Scholar 

  • Barlow HB, Hill RM, Levick WR (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J Physiol 173: 377–407

    PubMed  CAS  Google Scholar 

  • Bloomfield SA, Miller RF (1986) A functional organization of ON and OFF pathways in the rabbit retina. J Neurosci 6: 1–13

    PubMed  CAS  Google Scholar 

  • Borg-Graham LJ, Grzywacz N (1992) A model of the direction selectivity circuit in retina: transformations by neurons singly and in concert. In: McKenna T, Davis J, Zornetzer SF (eds) Single neuron computation. Academic Press, San Diego, pp 347–375

    Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12: 297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1990) Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. Proc Natl Acad Sci USA 87: 9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Brandon C (1987) Cholinergic neurons in the rabbit retina: dendritic branching and ultra-structural connectivity. Brain Res 426: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Brandon C, Criswell MH (1997) Rabbit retinal ganglion cells that project to the medial terminal nucleus are directionally-selective. Soc Neurosci Abstr 23: 1023

    Google Scholar 

  • Brandstätter JH, Greferath U, Euler T, Wässle H (1995) Co-stratification of GABAA receptors with the directionally selective circuitry of the rat retina. Vis Neurosci 12: 345–358

    Article  PubMed  Google Scholar 

  • Brecha N, Johnson D, Peichl L, Wässle H (1988) Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. Proc Natl Acad Sci USA 85: 6187–6191

    Article  PubMed  CAS  Google Scholar 

  • Brown SP, Masland RH (1999) Costratification of a population of bipolar cells with the direction-selective circuitry of the rabbit retina. J Comp Neurol 408: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Buhl EH, Peichl L (1986) Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system. J Comp Neurol 253: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Caldwell JH, Daw NW, Wyatt HJ (1978) Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol 276: 277–298

    PubMed  CAS  Google Scholar 

  • Cleland BG, Levick WR (1974) Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J Physiol 240: 457–492

    PubMed  CAS  Google Scholar 

  • Cohen ED, Miller RF (1994) The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells. Vis Neurosci 11: 317–332

    Article  PubMed  CAS  Google Scholar 

  • Cohen ED, Miller RF (1995) Quinoxalines block the mechanism of directional selectivity in ganglion cells of the rabbit retina. Proc Natl Acad Sci U S A 92: 1127–1131

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H (1969) Optokinetic eye movements in the rabbit: input-output relations. Vision Res 9: 117–132

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H (1975) Direction-selective units in the rabbit’s nucleus of the optic tract. Brain Res 100: 489–508

    Article  PubMed  CAS  Google Scholar 

  • Dacey DM (1988) Dopamine-accumulating retinal neurons revealed by in vitro fluorescence display a unique morphology. Science 240: 1196–1198

    Article  PubMed  CAS  Google Scholar 

  • DeMonasterio FM (1978) Properties of ganglion cells with atypical receptive-field organization in retina of macaques. J Neurophysiol 41: 1435–1449

    CAS  Google Scholar 

  • DeVoe RD, Carras PL, Criswell MH, Gur RB (1989) Not by ganglion cells alone: directional selectivity is widespread in identified cells of the turtle retina. In: Weiler R, Osborne NN (eds) Neurobiology of the inner retina. Springer, Berlin, pp 233–246

    Google Scholar 

  • DeVries SH, Baylor DA (1995) An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc Natl Acad Sci USA 92: 10658–10662

    Article  PubMed  CAS  Google Scholar 

  • DeVries SH, Baylor DA (1997) Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 78: 2048–2060

    PubMed  CAS  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin

    Book  Google Scholar 

  • Enz R, Brandstätter JH, Wässle H, Bormann J (1996) Immunocytochemical localization of the GABAc receptor rho subunits in the mammalian retina. J Neurosci 16: 4479–4490

    PubMed  CAS  Google Scholar 

  • Euler T, Wässle H (1998) Different contributions of GABAA and GABAc receptors to rod and cone bipolar cells in a rat retinal slice preparation. J Neurophysiol 79: 1384–1395

    PubMed  CAS  Google Scholar 

  • Famiglietti EV (1983) `Starburst’ amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Res 261: 138–144

    Article  PubMed  Google Scholar 

  • Famiglietti EV (1987) Starburst amacrine cells in cat retina are associated with bistratified, presumed directionally selective, ganglion cells. Brain Res 413: 404–408

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti EV (1989) Structural organization and development of dorsally-directed (vertical) asymmetrical amacrine cells in rabbit retina. In: Weiler R, Osborne NN (eds) Neurobiology of the inner retina. Springer, Berlin, pp 169–180

    Google Scholar 

  • Famiglietti EV (1991) Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J Comp Neurol 309: 40–70

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti EV (1992a) Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells. Light and electron microscopic studies with a functional interpretation. J Comp Neurol 316: 422–446

    Article  CAS  Google Scholar 

  • Famiglietti EV (1992b) New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. J Comp Neurol 324: 295–321

    Article  CAS  Google Scholar 

  • Famiglietti EV (1992c) Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. J Comp Neurol 324: 322–335

    Article  CAS  Google Scholar 

  • Famiglietti EV, Tumosa N (1987) Immunocytochemical staining of cholinergic amacrine cells inrabbit retina. Brain Res 413: 398–403

    Article  PubMed  CAS  Google Scholar 

  • Farmer SG, Rodieck RW (1982) Ganglion cells of the cat accessory optic system: morphology and retinal topography. J Comp Neurol 205: 190–198

    Article  PubMed  CAS  Google Scholar 

  • Feigenspan A, Bormann J (1998) GABA-gated Cl-channels in the rat retina. Prog Retinal Eye Res 17: 99–126

    Article  CAS  Google Scholar 

  • Giolli RA (1961) An experimental study of the accessory optic tracts (transpeduncular tracts and anterior accessory optic tracts) in the rabbit. J Comp Neurol 121: 89–108

    Article  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34: 635–660

    PubMed  CAS  Google Scholar 

  • Grzywacz NM, Amthor FR (1989) A computationally robust anatomical model for retinal directional selectivity. In: Touretzky DS (ed) Advances in neural information processing systems I. Morgan Kaufmann, New York, pp 477–484

    Google Scholar 

  • Grzywacz NM, Amthor FR (1993) Facilitation in ON-OFF directionally selective ganglion cells of the rabbit retina. J Neurophysiol 69: 2188–2199

    PubMed  CAS  Google Scholar 

  • Grzywacz NM, Amthor FR, Merwine DK (1994) Directional hyperacuity in ganglion cells of the rabbit retina. Vis Neurosci 11: 1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Grzywacz NM, Tootle JS, Amthor FR (1997) Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit’s retinal directional selectivity? Vis Neurosci 14: 39–54

    Article  PubMed  CAS  Google Scholar 

  • Grzywacz NM, Amthor FR, Merwine DK (1998) Necessity of acetylcholine for retinal directionally selective responses to drifting gratings in rabbit. J Physiol 512: 575–581

    Article  PubMed  CAS  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-and Vorzeichenauswertung bei der Bewegungsperzeption der RüsselkafersChlorophanus.Z Naturforsch l lb: 513–524

    Google Scholar 

  • He S (1994) Further investigations of direction-selective ganglion cells of the rabbit retina. PhD Thesis, Australian National University

    Google Scholar 

  • He S, Masland RH (1997) Retinal direction selectivity after targeted laser ablation of starburst amacrine cells. Nature 389: 378–382

    Article  PubMed  CAS  Google Scholar 

  • He S, Masland RH (1998) ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation. Vis Neurosci 15: 369–375

    Article  PubMed  Google Scholar 

  • Ikeda H, Wright MJ (1972) Receptive field organization of `sustained’ and `transient’ retinal ganglion cells which subserve different functional roles. J Physiol (Lond) 227: 769–800

    CAS  Google Scholar 

  • Jensen RJ (1995) Effects of Cat+channel blockers on directional selectivity of rabbit retinal ganglion cells. J Neurophysiol 74: 12–23

    PubMed  CAS  Google Scholar 

  • Kier CK, Buchsbaum G, Sterling P (1995) How retinal microcircuits scale for ganglion cells of different size. J Neurosci 15: 7673–7683

    PubMed  CAS  Google Scholar 

  • Kittila CA, Granda AM (1994) Functional morphologies of retinal ganglion cells in the turtle. J Comp Neurol 350: 623–645

    Article  PubMed  CAS  Google Scholar 

  • Kittila CA, Massey SC (1995) Effect of ON pathway blockade on directional selectivity in the rabbit retina. J Neurophysiol 73: 703–712

    PubMed  CAS  Google Scholar 

  • Kittila CA, Massey SC (1997) Pharmacology of directionally selective ganglion cells in the rabbit retina. J Neurophysiol 77: 675–689

    PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans Roy Soc Lond B 298: 227–263

    Article  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80: 2799–2802

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1986) Computations in the vertebrate retina: gain enhancement, differentiation and motion discrimination. Trends Neurosci 9: 204–211

    Article  Google Scholar 

  • Kogo N, Rubio DM, Ariel M (1998) Direction tuning of individual retinal inputs to the turtle accessory optic system. J Neurosci 18: 2673–2684

    PubMed  CAS  Google Scholar 

  • Kolb H, Nelson R (1984) Neural architecture of the cat retina. Prog Retinal Res 3: 21–60

    Article  Google Scholar 

  • Levick WR (1996) Receptive fields of cat retinal ganglion cells with special reference to the alpha cells. Prog Retinal Eye Res 15: 457–500

    Article  Google Scholar 

  • Levick WR, Thibos LN (1983) Receptive fields of cat ganglion cells: classification and construction. Prog Retinal Res 2: 267–319

    Article  Google Scholar 

  • Levick WR, Oyster CW, Takahashi E (1969) Rabbit lateral geniculate nucleus: sharpener of directional information. Science 165: 712–714

    Article  PubMed  CAS  Google Scholar 

  • Linn DM, Massey SC (1992) GABA inhibits ACh release from the rabbit retina: a direct effect or feedback to bipolar cells? Vis Neurosci 8: 97–106

    Article  PubMed  CAS  Google Scholar 

  • Linn DM, Blazynski C, Redbum DA, Massey SC (1991) Acetylcholine release from the rabbit retina mediated by kainate receptors. J Neurosci 11: 111–122

    PubMed  CAS  Google Scholar 

  • MacNeil MA, Masland RH (1998) Extreme diversity among amacrine cells: implications for function. Neuron 20: 971–982

    Article  PubMed  CAS  Google Scholar 

  • MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH (1999) The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413: 305–326

    Article  PubMed  CAS  Google Scholar 

  • Marchiafava PL (1979) The responses of retinal ganglion cells to stationary and moving visual stimuli. Vision Res 19: 1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Mariani AP (1982) Association amacrine cells could mediate directional selectivity in pigeon retina. Nature 298: 654–655

    Article  PubMed  CAS  Google Scholar 

  • Masland RH, Ames A (1976) Responses to acetylcholine of ganglion cells in an isolated mammalian retina. J Neurophysiol 39: 1220–1235

    PubMed  CAS  Google Scholar 

  • Masland RH, Mills JW, Hayden SA (1984) Acetylcholine-synthesizing amacrine cells: identification and selective staining by using radioautography and fluorescent markers. Proc Roy Soc Lond B 223: 79–100

    Article  CAS  Google Scholar 

  • Massey SC, Miller RF (1990) N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. J Neurophysiol 63: 16–30

    PubMed  CAS  Google Scholar 

  • Massey SC, Mills SL (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366: 15–33

    Article  PubMed  CAS  Google Scholar 

  • Massey SC, Linn DM, Kittila CA, Mirza W (1997) Contributions of GABAAreceptors and GABAc receptors to acetylcholine release and directional selectivity in the rabbit retina. Vis Neurosci 14: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Lagnado L, Baylor DA (1995) Concerted signaling by retinal ganglion cells. Science 270: 1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Merwine DK, Amthor FR, Grzywacz NM (1995) Interaction between center and surround in rabbit retinal ganglion cells. J Neurophysiol 73: 1547–1567

    PubMed  CAS  Google Scholar 

  • Miles FA (1972) Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res 48: 65–92

    Article  PubMed  CAS  Google Scholar 

  • Miles FA (1993) The sensing of rotational and translational optic flow by the primate optokinetic system. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 393–403

    Google Scholar 

  • Millar TJ, Morgan IG (1987) Cholinergic amacrine cells in the rabbit retina synapse onto other cholinergic amacrine cells. Neurosci Lett 74: 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Miller RF (1979) The neuronal basis of ganglion-cell receptive-field organization and the physiology of amacrine cells. In: Schmitt FO, Worden FG (eds) The neurosciences: fourth study program. MIT Press, Cambridge, pp 227–245

    Google Scholar 

  • Mills SL, Massey SC (1992) Morphology of bipolar cells labeled by DAPI in the rabbit retina. J Comp Neurol 321: 133–149

    Article  PubMed  CAS  Google Scholar 

  • Nelson R (1977) Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol 172: 109–135

    Article  PubMed  CAS  Google Scholar 

  • Oyster CW (1968) The analysis of image motion by the rabbit retina. J Physiol 199: 613–635

    PubMed  CAS  Google Scholar 

  • Oyster CW (1990) Neural interactions underlying direction-selectivity in the rabbit retina. In: Blakemore C (ed) Vision: coding and efficiency. Cambridge University Press, Cambridge, pp92–102

    Google Scholar 

  • Oyster CW, Barlow HB (1967) Direction-selective units in rabbit retina: distribution of preferred directions. Science 155: 841–842

    Article  PubMed  CAS  Google Scholar 

  • Oyster CW, Takahashi E, Levick WR (1971) Information processing in the rabbit visual system. Doc Ophthalmol 30: 161–204

    Article  Google Scholar 

  • Oyster CW, Takahashi E, Collewijn H (1972) Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res 12: 183–193

    Article  PubMed  CAS  Google Scholar 

  • Oyster CW, Simpson JI, Takahashi ES, Soodak RE (1980) Retinal ganglion cells projecting to the rabbit accessory optic system. J Comp Neurol 190: 49–61

    Article  PubMed  CAS  Google Scholar 

  • Oyster CW, Amthor FR, Takahashi ES (1993) Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina. Vision Res 33: 579–608

    Article  PubMed  CAS  Google Scholar 

  • Panico J, Sterling P (1995) Retinal neurons and vessels are not fractal but space-filling. J Comp Neurol 361: 479–490

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Walker M (1980) Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat. Proc Roy Soc Lond B 208: 415–431

    Article  CAS  Google Scholar 

  • Peters BN, Masland RH (1996) Responses to light of starburst amacrine cells. J Neurophysiol 75: 469–480

    PubMed  CAS  Google Scholar 

  • Poggio T, Torre V (1981) A theory of synaptic interactions. In: Reichardt WE, Poggio T, (eds) Theoretical approaches in neurobiology. MIT Press, Cambridge, pp 28–38

    Google Scholar 

  • Poznanski RR (1992) Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: a functional interpretation of dendritic morphology. Bull Math Biol 54: 905–928

    PubMed  CAS  Google Scholar 

  • Pu ML, Amthor FR (1990) Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit. J Comp Neurol 302: 657–674

    Article  PubMed  CAS  Google Scholar 

  • Rademaker GGJ, Ter Braak JWG (1948) On the central mechanism of some optic reactions. Brain 71: 48–76

    Article  PubMed  CAS  Google Scholar 

  • Raviola G, Raviola E (1967) Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. Am J Anat 120: 403–425

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith W (ed) Sensory communication. John Wiley, New York, pp 303–317

    Google Scholar 

  • Rodieck RW (1988) The primate retina.In:Horst HD, Erwin J (eds) Comparative primate biology, Vol 4, neurosciences. Alan R Liss, New York, pp 203–278

    Google Scholar 

  • Rodieck RW (1998) The first steps in seeing. Sinauer, Sunderland MA

    Google Scholar 

  • Rosenberg AF, Ariel M (1991) Electrophysiological evidence for a direct projection of direction-sensitive retinal ganglion cells to the turtle’s accessory optic system. J Neurophysiol 65: 1022–1033

    PubMed  CAS  Google Scholar 

  • Schiller PH, Malpeli JG (1977) Properties and tectal projections of monkey retinal ganglion cells. J Neurophysiol 40: 428–445

    PubMed  CAS  Google Scholar 

  • Simpson JI (1984) The accessory optic system. Ann Rev Neurosci 7: 13–41

    Article  PubMed  CAS  Google Scholar 

  • Simpson JI, Soodak RE, Hess R (1979) The accessory optic system and its relation to the vestibulocerebellum. Prog Brain Res 50: 715–724

    Article  PubMed  CAS  Google Scholar 

  • Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic system of the rabbit. II. Spatial organization of direction selectivity. J Neurophysiol 60: 2055–2072

    PubMed  CAS  Google Scholar 

  • Smith RD, Grzywacz NM, Borg-Graham Li (1996) Is the input to a GABAergic synapse the sole asymmetry in turtle’s retinal directional selectivity? Vis Neurosci 13: 423–439

    Article  PubMed  CAS  Google Scholar 

  • Smith RG, Freed MA, Sterling P (1986) Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci 6: 3505–3517

    PubMed  CAS  Google Scholar 

  • Soodak RE, Simpson JI (1988) The accessory optic system of the rabbit. I. Basic visual response properties. J Neurophysiol 60: 2037–2054

    PubMed  CAS  Google Scholar 

  • Tauchi M, Masland RH (1984) The shape and arrangement of the cholinergic neurons in the rabbit retina. Proc Roy Soc Lond B 223: 101–119

    Article  CAS  Google Scholar 

  • Tauchi M, Masland RH (1985) Local order among the dendrites of an amacrine cell population. J Neurosci 5: 2494–2501

    PubMed  CAS  Google Scholar 

  • Taylor WR, Wässle H (1995) Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur J Neurosci 7: 2308–2321

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Chen E, Copenhagen DR (1995) Characterization of spontaneous synaptic currents in salamander retinal ganglion cells. J Physiol 486: 207–221

    PubMed  CAS  Google Scholar 

  • Torre V, Poggio T (1978) A synaptic mechanism possibly underlying directional selectivity to motion. Proc Roy Soc Lond B 202: 409–416.

    Article  Google Scholar 

  • Vaney DI (1984) `Coronate’ amacrine cells in the rabbit retina have the `starburst’ dendritic morphology. Proc Roy Soc Lond B 220: 501–508

    Article  CAS  Google Scholar 

  • Vaney DI (1990) The mosaic of amacrine cells in the mammalian retina. Prog Retinal Res 9: 49–100

    Article  CAS  Google Scholar 

  • Vaney DI (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI (1994a) Patterns of neuronal coupling in the retina. Prog Retinal Eye Res 13: 301–355

    Article  Google Scholar 

  • Vaney DI (1994b) Territorial organization of direction-selective ganglion cells in rabbit retina. J Neurosci 14: 6301–6316

    CAS  Google Scholar 

  • Vaney DI, Pow DV (2000) The dendritic architecture of the cholinergic plexus in the rabbit retina: selective labeling by glycine accumulation in the presence of sarcosine. J Comp Neurol 421: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI, Young HM (1988) GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Res 438: 369–373

    Article  PubMed  CAS  Google Scholar 

  • Vaney DI, Levick WR, Thibos LN (198la) Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties. Exp Brain Res 44: 27–33

    Article  Google Scholar 

  • Vaney DI, Peichl L, Wässle H, Illing RB (1981b) Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Res 212: 447–453

    Article  CAS  Google Scholar 

  • Vaney DI, Peichl L, Boycott BB (1988) Neurofibrillar long-range amacrine cells in mammalian retinae. Proc Roy Soc Lond B 235: 203–219

    Article  CAS  Google Scholar 

  • Vaney DI, Collin SP, Young HM (1989) Dendritic relationships between cholinergic amacrine cells and direction-selective retinal ganglion cells. In: Weiler R, Osborne NN (eds) Neurobiology of the inner retina. Springer, Berlin, pp 157–168

    Chapter  Google Scholar 

  • Waltman J (1993) Subcortical optokinetic mechanisms. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 321–369

    Google Scholar 

  • Wässle H, Peichl L, Boycott BB (1981) Dendritic territories of cat retinal ganglion cells. Nature 292: 344–345

    Article  PubMed  Google Scholar 

  • Werblin F (1991) Synaptic connections, receptive fields, and patterns of activity in the tiger salamander retina. A simulation of patterns of activity formed at each cellular level from photoreceptors to ganglion cells. Invest Ophthalmol Vis Sci 32: 459–483

    PubMed  CAS  Google Scholar 

  • Wong RO (1990) Differential growth and remodelling of ganglion cell dendrites in the postnatal rabbit retina. J Comp Neurol 294: 109–132

    Article  PubMed  CAS  Google Scholar 

  • Wyatt HJ, Daw NW (1975) Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. J Neurophysiol 38: 613–626

    PubMed  CAS  Google Scholar 

  • Wyatt HJ, Daw NW (1976) Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191: 204–205

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Masland RH (1992) Direct visualization of the dendritic and receptive fields of directionally selective retinal ganglion cells. Science 258: 1949–1952

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Masland RH (1994) Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J Neurosci 14: 5267–5280

    PubMed  CAS  Google Scholar 

  • Young HM, Vaney DI (1991) Rod-signal interneurons in the rabbit retina: 1. Rod bipolar cells. J Comp Neurol 310: 139–153

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZJ, Fain GL (1995) Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices. J Neurosci 15: 5334–5345

    PubMed  CAS  Google Scholar 

  • Zhou ZJ, Fain GL, Dowling JE (1993) The excitatory and inhibitory amino acid receptors on horizontal cells isolated from the white perch retina. J Neurophysiol 70: 8–19

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaney, D.I., He, S., Taylor, W.R., Levick, W.R. (2001). Direction-Selective Ganglion Cells in the Retina. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics