Skip to main content

Single-Molecule Fluorescence — Each Photon Counts

  • Chapter
Single Molecule Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 67))

Abstract

The first experiments on single molecules were driven by the challenge of reaching the ultimate limit in chemical analysis. Following the first absorption experiments [1], fluorescence excitation detection facilitated single-molecule spectroscopy with an almost unbelievable signal-to-noise ratio. Fluorescence excitation spectroscopy allowed for the investigation of properties of single molecules and for the comparison of the time average of these properties with the ensemble average. In all of these measurements, the detected photons were integrated to obtain an intensity as a function of one or several experimental parameters in a way similar to ensemble fluorescence spectroscopy. In other words, each photon was just a “click” that increased the number of counts in a certain channel by one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Moerner, L. Kador, Phys. Rev. Lett. 62(21), 2535 (1989)

    Article  ADS  Google Scholar 

  2. J. Trautman, J. Macklin, L. Brus, and E. Betzig, Nature 369, 40 (1994)

    Article  ADS  Google Scholar 

  3. M. Orrit and J. Bernard, Phys. Rev. Lett. 65(21), 2716 (1990)

    Article  ADS  Google Scholar 

  4. T. Nonn, T. Plakhotnik, and U. P. Wild, to be published (2000)

    Google Scholar 

  5. F. Güttler, J. Sepiol, T. Plakhotnik, A. Mitterdorfer, A. Renn, and U. Wild, J. Lumin. 56, 29 (1993)

    Article  Google Scholar 

  6. M. Pirotta, F. Güttler, H. Gygax, A. Renn, und U. Wild, Chem. Phys. Lett. 208, 379 (1993)

    Article  ADS  Google Scholar 

  7. U. P. Wild, F. Güttler, M. Pirotta, and A. Renn, Chem. Phys. Lett. 193, 451 (1992)

    Article  ADS  Google Scholar 

  8. M. Croci, H. J. Müschenborn, F. Güttler, A. Renn, and U. Wild, Chem. Phys. Lett. 212, 71 (1993)

    Article  ADS  Google Scholar 

  9. J. Bernard, L. Fleury, H. Talon, and M. Orrit, J. Chem. Phys. 98(2), 850 (1993)

    Article  ADS  Google Scholar 

  10. T. Basché, W. Moerner, M. Orrit, and H. Talon, Phys. Rev. Lett. 69(10), 1516 (1992)

    Article  ADS  Google Scholar 

  11. M. Kollner and J. Wolfrum, Chem. Phys. Lett. 200, 1 (1992)

    Article  Google Scholar 

  12. S. A. Soper, L. M. Davis, and E. B. Shera, J. Opt. Soc. Am. B 9(10), 1761 (1992)

    Article  ADS  Google Scholar 

  13. S. Nie and R. Zare, Anal. Chem. 70, 431 (1995)

    Google Scholar 

  14. L. Brand, C. Eggeling, C. Zander, K. H. Drexhage, and C. A. M. Seidel, J. Phys. Chem. A 101(24), 4313 (1997)

    Article  Google Scholar 

  15. J. R. Fries, L. Brand, C. Eggeling, M. Kollner, and C. A. M. Seidel, J. Phys. Chem. A 102(33), 6601 (1998)

    Article  Google Scholar 

  16. M. Kollner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, and J. Wolfrum, Chem. Phys. Lett. 250(3-4), 355 (1996)

    Article  ADS  Google Scholar 

  17. C. Zander, M. Sauer, K. H. Drexhage, D. S. Ko, A. Schulz, J. Wolfrum, L. Brand, C. Eggeling, and C. A. M. Seidel, Appl. Phys. B 63(5), 517 (1996)

    ADS  Google Scholar 

  18. C. Zander, K. H. Drexhage, K. T. Han, J. Wolfrum, and M. Sauer, Chem. Phys. Lett. 286(5-6), 457 (1998)

    Article  ADS  Google Scholar 

  19. A. VanOrden, N. P. Machara, P. M. Goodwin, and R. A. Keller, Anal. Chem. 70(7), 1444 (1998)

    Article  Google Scholar 

  20. K. Dorre, S. Brakmann, M. Brinkmeier, H. Kyung Tae, K. Riebeseel, P. Schwille, J. Stephan, T. Wetzel, M. Lapczyna, M. Stuke, R. Bader, M. Hinz, H. Seliger, J. Holm, M. Eigen, and R. Rigler, Bioimaging 5(3), 139 (1997)

    Article  Google Scholar 

  21. H. R. Jett, R. A. Keller, J. C. Martin, B. L. Marrone, R. K. Moyzis, R. L. Ratliff, N. K. Seitzinger, E. B. Shera, and C. C. Stewart, J. Biomol. Struct. Dynamics 7, 301 (1989)

    Article  Google Scholar 

  22. P. M. Goodwin, W. P. Ambrose, and R. A. Keller, Acc. Chem. Res. 29(12), 607 (1996)

    Article  Google Scholar 

  23. W. Becker, H. Hickl, C. Zander, K. H. Drexhage, M. Sauer, S. Siebert, and J. Wolfrum, Rev. Sci. Instr. 70(3), 1835 (1999)

    Article  ADS  Google Scholar 

  24. M. Prummer, C. G. Hübner, B. Sick, B. Hecht, A. Renn, and U. P. Wild, An. Chem. 72(3), 433 (2000)

    Article  Google Scholar 

  25. E. Görlach, H. Gygax, P. Lubini, and U. Wild, Chem. Phys. 194, 185 (1995)

    Article  ADS  Google Scholar 

  26. Enderlein and Sauer, J. Phys. Chem. A 105(1), 48 (2001)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hübner, C.G., Krylov, V., Renn, A., Nyffeler, P., Wild, U.P. (2001). Single-Molecule Fluorescence — Each Photon Counts. In: Single Molecule Spectroscopy. Springer Series in Chemical Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56544-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56544-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62702-6

  • Online ISBN: 978-3-642-56544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics