Skip to main content

Single-Molecule Optical Switching: A Mechanistic Study of Nonphotochemical Hole-Burning

  • Chapter
Single Molecule Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 67))

  • 482 Accesses

Abstract

Persistent spectral hole-burning of dopant chromophores embedded in solid matrices has proven to be a sensitive high-resolution spectroscopic tool to investigate structural and dynamic properties of amorphous and crystalline hosts at low temperature [1]. A commonly encountered mechanism of holeformation is the nonphotochemical process, for which it is assumed that the frequency selective laser excitation and the subsequent relaxation of guest and host eventually leads to a change of configurational degrees of freedom in the nearby environment of the photo-excited centers or in the impurities themselves (or both) [2]. However, detailed knowledge about the microscopic mechanism of the nonphotochemical process is rare. Methyl group spin conversion [3] and rearrangement of hydrogen bond networks [1] belong to the few mechanisms known in the literature. In the present work we want to introduce a model system which allows the reproducible observation of nonphotochemical hole-burning at the single molecule level, a phenomenon which amounts to the controlled optical manipulation of an isolated chromophore. We will illustrate how a number of experimental techniques available in single molecule spectroscopy can be combined to obtain ample information about the underlying hole-burning mechanism. Then we will introduce a theoretical approach [4] to elucidate the microscopic nature of the configurational degrees of freedom responsible for the formation of the photoproduct: the results of recent molecular dynamics simulations do indeed admit a detailed mechanistic scenario for the hole-burning process in our model system. We thus hope to demonstrate how studies at the single molecule level can serve to improve our understanding of the structural dynamics of solids at low temperatures. To do so, we will start by giving a brief overview of the basic concepts of low-temperature single-molecule spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. Moerner (ed), Persistent Spectral Hole-Burning: Science and Applications (Springer, Berlin, 1989)

    Google Scholar 

  2. J. M. Hayes, R. P. Stout, and G. J. Small, J. Chem. Phys. 74, 4266 (1981)

    Article  ADS  Google Scholar 

  3. C. von Borcyzskowski, A. Oppenländer, H. P. Trommsdorff, and J. C. Vial, Phys. Rev. Lett. 65, 3277 (1990)

    Article  ADS  Google Scholar 

  4. P. Bordat, R. Brown, Chem. Phys. Lett. 331, 439 (2000)

    Article  ADS  Google Scholar 

  5. T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild (eds), Single-Molecule Optical Detection, Imaging and Spectroscopy (Verlag Chemie, Weinheim, 1997)

    Google Scholar 

  6. J. L. Skinner, W. E. Moerner, J. Phys. Chem. 100, 13251 (1996)

    Article  Google Scholar 

  7. W. E. Moerner and M. Orrit, Science 283, 1593 (1999)

    Article  Google Scholar 

  8. P. Tamarat, A. Maali, B. Lounis, and M. Orrit, J. Phys. Chem. A 104,1 (2000)

    Article  Google Scholar 

  9. S. Nie, D. T. Chiu, and R. N. Zare, Science 266, 1018 (1994)

    Article  ADS  Google Scholar 

  10. S. Kummer, T. Basché, and C. Brauchte, Chem. Phys. Lett. 229, 309 (1994); Chem. Phys. Lett. 232, 414 (1995)

    Article  ADS  Google Scholar 

  11. W. E. Moerner and L. Kador, Phys. Rev. Lett. 62, 2535 (1989)

    Article  ADS  Google Scholar 

  12. M. Orrit and J. Bernard, Phys. Rev. Lett. 65, 2716 (1990)

    Article  ADS  Google Scholar 

  13. S. Kummer, F. Kulzer, R. Kettner, T. Basché, C. Tietz, C. Glowatz, and C. Kryschi, J. Chem. Phys. 107, 7673 (1997)

    Article  ADS  Google Scholar 

  14. L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, Mol. Phys. 95, 1333 (1998)

    Article  ADS  Google Scholar 

  15. F. Kulzer, F. Koberling, T. Christ, A. Mews, and T. Basché, Chem. Phys. 247, 23 (1999)

    Article  ADS  Google Scholar 

  16. H. M. Rietveld, E. N. Maslen, and C. J. B. Clews, Acta Cryst. B 26, 693 (1970)

    Article  Google Scholar 

  17. J. L. Baudour, Y. Delugeard, and H. Cailleau, Acta Cryst B 150, 32 (1976)

    Google Scholar 

  18. M. Sougoti, Ph. D. Thesis, Université des Rennes I, Rennes (1994)

    Google Scholar 

  19. P. Bordat and R. Brown, Chem. Phys. 246, 323 (1999)

    Article  ADS  Google Scholar 

  20. T. Basché, S. Kummer, and C. Bräuchte, Nature 373, 132 (1995)

    Article  ADS  Google Scholar 

  21. M. Vogel, A. Gruber, J. Wrachtrup, and C. von Boczyskowski, J. Phys. Chem. 99, 14915 (1995)

    Article  Google Scholar 

  22. P. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer, R. Kettner, S. Mais, and T. Basché, Phys. Rev. Lett. 75, 1514 (1995)

    Article  ADS  Google Scholar 

  23. S. Kummer, S. Mais, and T. Basché, J. Chem. Phys 99, 17078 (1995)

    Article  Google Scholar 

  24. D. J. Norris, M. Kuwata-Gonokami, and W. E Moerner, Appl. Phys. Lett. 71, 297 (1997)

    Article  ADS  Google Scholar 

  25. A. C. J. Brouwer, E. J. J. Groenen, and J. Schmidt, Phys. Rev. Lett. 80, 3944 (1998)

    Article  ADS  Google Scholar 

  26. S. Kummer, Ph. D. Thesis, Universität München, München (1996)

    Google Scholar 

  27. F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and T. Basché, Nature 387, 688 (1997)

    Article  ADS  Google Scholar 

  28. F. Kulzer, R. Matzke, C. Bräuchle, and T. Basché, J. Phys. Chem. A 103, 2408 (1999)

    Article  Google Scholar 

  29. T. Basché, W. P. Ambrose, and W. E. Moerner, J. Opt. Soc. Am. B 9, 829 (1992)

    Article  ADS  Google Scholar 

  30. T. Basché and W. E. Moerner, Nature 352, 600 (1991)

    Article  Google Scholar 

  31. L. Fleury, A. Zumbusch, M. Orrit, R. Brown, and J. Bernard, J. Lumin. 56, 15 (1993)

    Article  Google Scholar 

  32. W. E. Moerner, T. Plakhotnik, T. Irngartinger, M. Croci, V. Palm, and U. P. Wild, J. Phys. Chem. 98, 7382 (1994)

    Article  Google Scholar 

  33. F. Kulzer, Ph. D. thesis, Universität Mainz, Mainz (2000)

    Google Scholar 

  34. U. P. Wild, F. Güttier, M. Pirotta, and A. Renn, Chem. Phys. Lett. 193, 451 (1992)

    Article  ADS  Google Scholar 

  35. M. Orit, J. Bernard, and A. Zumbusch, Chem. Phys. Lett. 196, 595 (1992)

    Article  ADS  Google Scholar 

  36. M. Pirotta, A. Renn, and U. P. Wild, Helv. Phys. Acta 69, 7 (1996)

    Google Scholar 

  37. S. A. Empedocles and M. G. Bawendi, Science 278, 2114 (1997)

    Article  ADS  Google Scholar 

  38. R. W. Munn, Chem. Phys. 76, 243 (1983)

    Article  ADS  Google Scholar 

  39. D. M. Hanson, J. S. Patel, I. C. Winkler, and S. A. Morrobel-Sosa, “Effects of Electric Fields on the Spectroscopic Properties of Molecular Solids,” in: Modern Problems in Condensed Matter Sciences: Spectroscopy and Excitation Dynamics of Molecular Systems Vol. 4, V. M. Agranovich and R. M. Hochstrasser (eds.), pp. 621–679 (North-Holland, Amsterdam, 19

    Google Scholar 

  40. J. H. Meyling, P. J. Bounds, and R. W. Munn, Chem. Phys. Lett. 51, 234 (1977)

    Article  ADS  Google Scholar 

  41. J. Gerblinger, U. Bogner, and M. Maier, Chem. Phys. Lett. 141, 31 (1987)

    Article  ADS  Google Scholar 

  42. M. Maier, Appl. Phys. B 41, 73 (1986)

    Article  ADS  Google Scholar 

  43. B. E. Kohler and J. C. Woehl, J. Chem. Phys. 102, 7773 (1995)

    Article  ADS  Google Scholar 

  44. N. Neto, M. Scrocco, and S. Califano, Spectrochimica Acta 22, 1981 (1966)

    Article  ADS  Google Scholar 

  45. P. Bordat and R. Brown, Chem. Phys. Lett. 291, 153 (1998)

    Article  ADS  Google Scholar 

  46. C. Kryschi, H. C. Fleischhauer, and B. Wagner, Chem. Phys. 225, 485 (1992)

    Article  Google Scholar 

  47. F. Güttler, J. Sepiol, T. Plakhotnik, A. Mitterdorfer, A. Renn, and U. P. Wild, J. Lunim. 56, 29 (1993)

    Google Scholar 

  48. F. Güttler, M. Croci, A. Renn, and U. P. Wild, Chem. Phys. Lett. 211, 421 (1996)

    Google Scholar 

  49. J. Köhler, A. C. J. Brouwer, E. J. J. Groenen, and J. Schmidt, Chem. Phys. Lett. 250, 137 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kulzer, F., Basché, T. (2001). Single-Molecule Optical Switching: A Mechanistic Study of Nonphotochemical Hole-Burning. In: Single Molecule Spectroscopy. Springer Series in Chemical Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56544-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56544-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62702-6

  • Online ISBN: 978-3-642-56544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics