Skip to main content

Thirteen Years of Single-Molecule Spectroscopy in Physical Chemistry and Biophysics

  • Chapter
Single Molecule Spectroscopy

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 67))

Abstract

The Nobel Conference on Single Molecule Spectroscopy in Physics, Chemistry and Biology was held at the Södergarn Mansion in Stockholm, Sweden on June 5–9, 1999. This meeting gathered researchers from all over the globe who utilize the optical properties of individual molecules to explore a wide range of problems spanning numerous fields of science. The breadth of interest and large number of workers in this new field provided a particularly stimulating intellectual environment for all. Thanks are due to the Nobel Foundation for making this conference possible, and in particular to the organizer, Professor Rudolf Rigler, for preparing a most exciting and enjoyable event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535–2538 (1989)

    Article  ADS  Google Scholar 

  2. M. Orrit and J. Bernard, “Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal,” Phys. Rev. Lett. 65, 2716–2719 (1990)

    Article  ADS  Google Scholar 

  3. W. E. Moerner and T. Basché, “Optical spectroscopy of single inpurity molecules in solids,” Angew. Chemie Int. Ed. Engl. 32, 457 (1993)

    Article  Google Scholar 

  4. W. E. Moerner, “Examining nanoenvironments in solids on the scale of a single, isolated molecule,” Science. 265, 46–53 (1994)

    Article  ADS  Google Scholar 

  5. W. E. Moerner, “High-resolution optical spectroscopy of single molecules in solids,” Acc. Chem. Res. 29, 563 (1996)

    Article  Google Scholar 

  6. M. Orrit et al., “Optical spectroscopy of single molecules in solids,” in: Progress in Optics, E. Wolf (ed.), pp. 61–144 (Elsevier, 1996)

    Google Scholar 

  7. T. Basché et al., Single Molecule Optical Detection, Imaging, and Spectroscopy (Verlag-Chemie, Munich, 1997)

    Google Scholar 

  8. S. Nie and R. N. Zare, Ann. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997)

    Article  Google Scholar 

  9. T. Plakhotnik, E. A. Donley, and U. P. Wild, “Single-molecule spectroscopy,” Ann. Rev. Phys. Chem. 48, 181–212 (1996)

    Article  ADS  Google Scholar 

  10. X. S. Xie and J. K. Trautman, “Optical studies of single molecules at room temperature,” Ann. Rev. Phys. Chem. 49, 441–480 (1998)

    Article  ADS  Google Scholar 

  11. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science. 283, 1670–1676 (1999)

    Article  ADS  Google Scholar 

  12. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science. 283, 1676–1683 (1999)

    Article  ADS  Google Scholar 

  13. W. P. Ambrose et al., “Single molecule fluorescence spectroscopy at room temperature,” Chem. Rev. 99(10), 2929–2956 (1999)

    Article  Google Scholar 

  14. W. E. Moerner, “Those blinking single molecules,” Science. 277, 1059 (1997)

    Google Scholar 

  15. W. M. Itano, J. C. Bergquist, and D. J. Wineland, Science,. 237, 612 (1987)

    Google Scholar 

  16. F. Diedrich et al., IEEE J. Quant. Elect. 24, 1314 (1988)

    Article  ADS  Google Scholar 

  17. H. Dehmelt, W. Paul, and N. F. Ramsey, Rev. Mod. Phys. 2, 525 (1990)

    Article  Google Scholar 

  18. G. Binnig and H. Rohrer, Rev. Mod. Phys. 59, 615 (1987)

    Article  ADS  Google Scholar 

  19. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  20. B. Sakmann and E. Neher, Single Channel Recording (New York, Plenum Press, 1995)

    Book  Google Scholar 

  21. T. T. Perkins, D. E. Smith, and S. Chu, “Single polymer dynamics in an elongational flow,” Science. 276, 2016–2021 (1997)

    Article  Google Scholar 

  22. S. M. Block, “Kinesin: What gives?,” Cell. 93, 5–8 (1998)

    Article  Google Scholar 

  23. D. L. Magde, E. L. Elson, and W. W. Webb, Biopolymers. 13, 29 (1974)

    Google Scholar 

  24. S. Wennmalm, L. Edman, and R. Rigler, “Conformational ‘fluctuations in single DNA molecules,” Proc. Nat. Acad. Sci. (USA). 94, 10641–10646 (1997)

    Article  ADS  Google Scholar 

  25. M. Eigen and R. Rigler, “Sorting single molecules: Application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. USA. 91, 5740–5747 (1994)

    Article  ADS  Google Scholar 

  26. A. M. Stoneham, Rev. Mod. Phys. 41, 82 (1969)

    Article  ADS  Google Scholar 

  27. K. K. Rebane, Impurity Spectra of Solids, p. 99 (New York, Plenum, 1970)

    Book  Google Scholar 

  28. E. B. Shera et al., “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553 (1990)

    Article  ADS  Google Scholar 

  29. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science. 262, 1422–1428 (1993)

    Article  ADS  Google Scholar 

  30. S. Nie, D. T. Chiu, and R. N. Zare, “Probing individual molecules with confocal fluorescence microscopy,” Science. 266, 1018–1021 (1994)

    Article  ADS  Google Scholar 

  31. J. K. Trautman and J. J. Macklin, “Time-resolved spectroscopy of single molecules using near-field and far-field optics,” Chem. Phys. 205, 221–229 (1996)

    Article  ADS  Google Scholar 

  32. R. M. Dickson et al., “Three dimensional imaging of single molecules in pores of poly(acrylamide) gels,” Science. 274(5289), 966–969 (1996)

    Article  ADS  Google Scholar 

  33. W. E. Moerner (ed.), Persistent Spectral Hole-Burning: Science and Applications. Topics in Current Physics. 44 (Springer, Berlin, 1988)

    Google Scholar 

  34. W. E. Moerner and T. P. Carter, “Statistical fine structure in inhomogeneously broadened absorption lines,” Phys. Rev. Lett. 59, 2705 (1987)

    Article  ADS  Google Scholar 

  35. G. C. Bjorklund, Opt. Lett. 5, 15 (1980)

    Article  ADS  Google Scholar 

  36. W. E. Moerner, “Persistent spectral hole-burning: Photon-gating and fundamental statistical limits,” in: Polymers for Microelectronics, Science, and Technology, Y. Tabata, I. Mita, and S. Nonogaki (eds.) (Kodansha Scientific, Tokyo, 1990)

    Google Scholar 

  37. L. Kador, D. E. Home, and W. E. Moerner, J. Phys. Chem. 94, 1237 (1990)

    Article  Google Scholar 

  38. G. C. Bjorklund et al., Appl. Phys. B. 32, 145 (1983)

    Google Scholar 

  39. L. Kador et al., “Absorption spectroscopy on single molecules in solids,” J. Chem. Phys. 111, 8755–8758 (1999)

    Article  ADS  Google Scholar 

  40. W. E. Moerner and W. P. Ambrose, “Comment on’ single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal’,” Phys. Rev. Lett. 66, 1376 (1991)

    Article  ADS  Google Scholar 

  41. F. G. Patterson et al., Chem. Phys. 84, 51 (1984)

    Article  ADS  Google Scholar 

  42. H. de Vries and D. A. Wiersma, J. Chem. Phys. 70, 5807 (1979)

    Article  ADS  Google Scholar 

  43. W. P. Ambrose and W. E. Moerner, “Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal,” Nature. 349, 225 (1991)

    Article  ADS  Google Scholar 

  44. W. P. Ambrose, T. Basché, and W. E. Moerner, “Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation,” J. Chem. Phys. 95, 7150 (1991)

    Article  ADS  Google Scholar 

  45. J. Friedrich and D. Haarer, in: Optical Spectroscopy of Glasses, I. Zschokke (ed.), p. 149 (Reidel, Dordrecht, 1986)

    Google Scholar 

  46. T. Basché and W. E. Moerner, “Optical modification of a single impurity molecule in a solid,” Nature. 355, 335 (1992)

    Article  ADS  Google Scholar 

  47. A. Zumbusch et al., Phys. Rev. Lett. 70, 3584 (1993)

    Google Scholar 

  48. P. D. Reilly and J. L. Skinner, “Spectral diffusion of single molecule fluorescence: A probe of low-frequency localized excitations in disordered crystals,” Phys. Rev. Lett. 71, 4257–4260 (1993)

    Article  ADS  Google Scholar 

  49. P. D. Reilly and J. L. Skinner, J. Chem. Phys. 102, 1540 (1995)

    Article  ADS  Google Scholar 

  50. E. Geva and J. L. Skinner, “Theory of single-molecule optical line-shape distributions in low-temperature glasses,” J. Phys. Chem. B. 101, 8920–8932 (1997)

    Article  Google Scholar 

  51. Plakhotnik, T., et al., “Single-molecule spectroscopy in Shpol’skii matrices,” Chimia. 48, 31 (1994)

    Google Scholar 

  52. J. K. Traut man et al., “Near-field spectroscopy of single molecules at room temperature,” Nature. 369, 40–42 (1994)

    Article  ADS  Google Scholar 

  53. X. S. Xie, “Single-molecule spectroscopy and dynamics at room temperature”, Acc. Chem. Res. 29(12), 598 (1996)

    Article  Google Scholar 

  54. W. A. Phillips (ed.), Amorphous Solids: Low-Temperature Properties, Topics in Current Physics. 24 (Springer, Berlin, 1981)

    Google Scholar 

  55. T. Basché, W. P. Ambrose, and W. E. Moerner, “Optical spectra and kinetics of single impurity molecules in a polymer: Spectral diffusion and persistent spectral hole-burning,” J. Opt. Soc. Am. B. 9, 829 (1992)

    Article  ADS  Google Scholar 

  56. P. Tchénio, A. B. Myers, and W. E. Moerner, “Optical studies of single terrylene molecules in polyethylene,” J. Lumin. 56, 1 (1993)

    Article  Google Scholar 

  57. W. E. Moerner et al., “Optical probing of single molecules of terrylene in a Shpolskii matrix — A two-state single-molecule switch,” J. Phys. Chem. 98, 7382–7389 (1994)

    Article  Google Scholar 

  58. J. Bernard et al., “Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing,” J. Chem. Phys. 98, 850 (1993)

    Article  ADS  Google Scholar 

  59. R. Loudon, The Quantum Theory of Light, 2nd ed., pp. 226–249 (Clarendon, Oxford, 1983)

    Google Scholar 

  60. H. J. Kimble, M. Dagenais, and L. Mandel, “Photon anti-bunching in resonance fluorescence,” Phys. Rev. Lett. 39, 691 (1977)

    Article  ADS  Google Scholar 

  61. T. Basché et al., “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett. 69, 1516–1519 (1992)

    Article  ADS  Google Scholar 

  62. W. E. Moerner, R. M. Dickson, and D. J. Norris, “Single-molecule spectroscopy and quantum optics in solids,” Adv. Atom. Molec. Opt. Phys. 38, 193–236 (1997)

    Article  ADS  Google Scholar 

  63. P. Tamarat et al., Phys. Rev. Lett. 75, 1514 (1995)

    Article  ADS  Google Scholar 

  64. J. Köhler et al., “Magnetic resonance of a single molecular spin”, Nature. 363, 242–244 (1993)

    Google Scholar 

  65. J. Wrachtrup et al., Nature. 363, 244 (1993)

    Google Scholar 

  66. J. Köhler et al., “Single molecule electron paramagnetic resonance spectroscopy: Hyperfine splitting owing to a single nucleus,” Science. 268, 1457–1460 (1995)

    Article  ADS  Google Scholar 

  67. P. Tchénio, A. B. Myers, and W. E. Moerner, “Dispersed fluorescence spectra of single molecules of pentacene in p-terphenyl,” J. Phys. Chem. 97, 2491 (1993)

    Article  Google Scholar 

  68. P. Tchén io, A. B. Myers, and W. E. Moerner, “Vibrational analysis of dispersed fluorescence from single molecules of terrylene in polyethylene”, Chem. Phys. Lett. 213, 325 (1993)

    Google Scholar 

  69. A. B. Myers et al., “Vibronic apectroscopy of individual molecules in solids,” J. Phys. Chem. 98, 10377 (1994)

    Article  Google Scholar 

  70. W. E. Moerner et al., “Near-rield optical spectroscopy of individual molecules in solids,” Phys. Rev. Lett. 73, 2764 (1994)

    Article  ADS  Google Scholar 

  71. D. J. Norris, M. Kuwata-Gonokami, and W. E. Moerner, “Excitation of a single molecule on the surface of a spherical microcavity,” Appl. Phys. Lett. 71, 297 (1997)

    Article  ADS  Google Scholar 

  72. T. Schmidt et al., “Imaging of single molecule diffusion,” Proc. Nat. Acad. Sci. USA. 93, 2926–2929 (1996)

    Article  ADS  Google Scholar 

  73. A. D. Mehta et al., “Single molecule biomechanics using optical methods,” Science. 283, 1689–1695 (1999)

    Article  ADS  Google Scholar 

  74. R. M. Dickson et al., “Blinking and switching behavior of individual green fluorescent protein molecules,” Nature. 388, 355 (1997)

    Article  ADS  Google Scholar 

  75. S. Kummer, R. M. Dickson, and W. E. Moerner, “Probing single molecules in poly(acrylamide) gels,” Proc. Soc. Photo-Opt. Instrum. Engr. 3273, 165–173 (1998)

    Google Scholar 

  76. J. S. Fawcett and C. J. O. R. Morris, “Molecular-sieve chromatography of proteins on granulated Polyacrylamide gels,” Sep. Sci. 1, 9–26 (1966)

    Article  Google Scholar 

  77. R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett. 81, 5322–5325 (1998)

    Article  ADS  Google Scholar 

  78. A. P. Bartko, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B. 103, 11237–11241 (1999)

    Article  Google Scholar 

  79. R. Y. Tsien, “The green fluorescent protein,” Ann. Rev. Biochem. 67, 509–544 (1998)

    Article  Google Scholar 

  80. W. E. Moerner et al., “Optical methods for exploring dynamics of single copies of green fluorescent protein,” Cytometry. 36, 232–238 (1999)

    Article  Google Scholar 

  81. E. J. G. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103, 10553–10560 (1999)

    Article  Google Scholar 

  82. P. Schwü le et al., “Fluorescence correlation spectroscopy reveals fast optical excitation-driven intermolecular dynamics of yellow fluorescent proteins,” Proc. Nat. Acad. Sci. (USA). 97, 151–156 (2000)

    Article  ADS  Google Scholar 

  83. A. Miyawaki et al., “Fluorescent indicators for Ca++ based on green fluorescent proteins and calmodulin,” Nature. 388, 882 (1997)

    Article  ADS  Google Scholar 

  84. S. Brasselet et al., “Single-molecule fluorescence resonant energy transfer in calcium-concentration-dependent cameleon,” J. Phys. Chem. B. 104, 3676–3682 (2000)

    Article  Google Scholar 

  85. S. Brasselet and W. E. Moerner, “Fluorescence behavior of single-molecule pH sensors,” Single Molecules. 1, 15–21 (2000)

    Article  ADS  Google Scholar 

  86. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature. 407, 491–493 (2000)

    Article  ADS  Google Scholar 

  87. M. Nirmal et al., “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature. 383, 802–804 (1996)

    Article  ADS  Google Scholar 

  88. M. Ormo et al., “Crystal structure of the Aequorea victoria green fluorescent protein,” Science. 273, 1392–1395 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moerner, W.E. (2001). Thirteen Years of Single-Molecule Spectroscopy in Physical Chemistry and Biophysics. In: Single Molecule Spectroscopy. Springer Series in Chemical Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56544-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56544-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62702-6

  • Online ISBN: 978-3-642-56544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics