Skip to main content

Single-Molecule Enzymology

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 67))

Abstract

The concept of the atom, the fundamental particle of chemistry, was understood by some of the 4th century BC Greeks, who philosophized that all matter is reducible to indivisible particles. Experiments done 200 years ago convinced the chemists of that era that these atoms combine to form molecules, and that all molecules of a substance are identical. The development of powerful spectroscopic tools over the past three decades allows us to characterize individual atoms and molecules, and to test fundamental assumptions of chemistry, physics, and biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. W. Greenlees, D. L. Clark, S. L. Kaufman, D. A. Lewis, J. F. Tonn, and J. H. Broadhurst, “High resolution laser spectroscopy with minute samples,” Opt. Commun. 23, 236–239 (1977)

    Article  ADS  Google Scholar 

  2. C. L. Pan, J. V. Prodan, W. M. Fairbank Jr., and C. Y. She, “Detection of individual atoms in helium buffer gas and observation of their real-time motion,” Opt. Lett. 5, 459–461 (1980)

    Article  ADS  Google Scholar 

  3. T. Hirschfeld, “Optical microscopic observation of single small molecules,” Appl. Opt. 15, 2965–2966 (1976)

    Article  ADS  Google Scholar 

  4. N. J. Dovichi, J. C. Martin, J. H. Jett, and R. A. Keller, “Attogram detection limit for aqueous dye samples by laser-induced fluorescence,” Science 219, 845–847 (1983)

    Article  ADS  Google Scholar 

  5. N. J. Dovichi, J. C. Martin, J. H. Jett, M. Trkula, and R. A. Keller, “Laserinduced fluorescence of flowing samples as an approach to single-molecule detection in liquids,” Anal. Chem. 56, 348–354 (1984)

    Article  Google Scholar 

  6. D. C. Nguyen, R. A. Keller, J. H. Jett, and J. C. Martin, “Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence,” Anal. Chem. 59, 2158–2161 (1987)

    Article  Google Scholar 

  7. N. J. Dovichi, “Attogram detection limits using laser-induced fluorescence,” Trends Anal. Chem. 3, 55–57 (1984)

    Article  Google Scholar 

  8. Y. F. Cheng and N. J. Dovichi, “Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence,” Science 242, 562–564 (1988)

    Article  ADS  Google Scholar 

  9. H. Swerdlow, J. Z. Zhang, D. Y. Chen, H. R. Harke, R. Grey, S. Wu, C. Fuller, and N. J. Dovichi, “Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence,” Anal. Chem. 63, 2835–2841 (1991)

    Article  Google Scholar 

  10. Z. Zhang, S. Krylov, E. A. Arriaga, R. Polakowski, and N. J. Dovichi, “Onedimensional protein analysis of an HT29 human colon adenocarcinoma cell,” Anal. Chem. 72, 318–322 (2000)

    Article  Google Scholar 

  11. J. Y. Zhao, N. J. Dovichi, O. Hindsgaul, S. Gosselin, and M. M. Palcic, “Detection of 100 molecules of product formed in a fucosyltransferase reaction,” Glycobiology 4, 239–242 (1994)

    Article  Google Scholar 

  12. N. J. Dovichi, Development of DNA sequencer, Science 285, 1016 (1999)

    Article  Google Scholar 

  13. J. Z. Zhang, K. O. Voss, D. F. Shaw, K. P. Roos, D. F. Lewis, J. Yan, R. Jiang, H. Ren, J. Y. Hou, Y. Fang, X. Puyang, H. Ahmadzadeh, and N. J. Dovichi, “A multiple-capillary electrophoresis system for small-scale DNA sequencing and analysis,” Nucleic Acids Res. 27, E36 (1999)

    Article  Google Scholar 

  14. D. Y. Chen and N. J. Dovichi, “Single-molecule detection in capillary electrophoresis: Molecular shot noise as a fundamental limit to chemical analysis,” Anal. Chem. 68, 690–696 (1996)

    Article  Google Scholar 

  15. W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535–2538 (1989)

    Article  ADS  Google Scholar 

  16. B. Rotman, “Measurement of activities of single molecules of β-galactosidase,” Proc. Natl. Acad. Sci. 47, 1981–1986 (1961)

    Article  ADS  Google Scholar 

  17. Q. Xue and E. S. Yeung, “Differences in the chemical reactivity of individual molecules of an enzyme,” Nature 373, 681–683 (1995)

    Article  ADS  Google Scholar 

  18. W. Tan and E. S. Yeung, “Monitoring the reactions of single enzyme molecules and single metal ions,” Anal. Chem. 69, 4242–4248 (1997)

    Article  Google Scholar 

  19. D. B. Craig, E. Arriaga, J. C. Y. Wong, H. Lu, and N. J. Dovichi, “Studies on single alkaline Phosphatase molecules: Reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation — the death of an enzyme,” J. Am. Chem. Soc. 118, 5245–5253 (1996)

    Article  Google Scholar 

  20. D. B. Craig, E. Arriaga, J. C. Y. Wong, H. Lu, and N. J. Dovichi, “The life and death of a single enzyme molecule,” Anal. Chem. 70, 39A–43A (1998)

    Article  Google Scholar 

  21. S. Gladstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, p. 108 (McGraw-Hill, New York, 1941)

    Google Scholar 

  22. L. Engström, “Studies on calf-intestinal alkaline Phosphatase. 1. Chromatographic purification, microheterogeneity and some other properties of the purified enzyme,” Biochim. et Biophys. Acta 52, p36–48 (1961)

    Article  Google Scholar 

  23. A. Varki, “Biological roles of Oligosaccharides: All of the theories are correct,” Glycobiology 2, 97–130 (1993)

    Article  Google Scholar 

  24. R. A. Bradshaw, F. Cancedda, L. H. Ericsson, P. A. Neumann, S. P. Piccoli, M. J. Schlesinger, K. Shriefer, and K. A. Walsh, “Amino acid sequence of Escherichia coli alkaline Phosphatase,” Proc. Natl. Acad. Sci. USA 78, 3473–3477 (1981)

    Article  ADS  Google Scholar 

  25. R. Polakowski, D. Craig, A. Skelley, and N. J. Dovichi, “Single molecules of highly purified bacterial alkaline Phosphatase,” J. Am. Chem. Soc. 122, 4853–4855 (2000)

    Article  Google Scholar 

  26. H. P. Lu, L. Sun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282, 1877–1882 (1998)

    Article  ADS  Google Scholar 

  27. Edman, Z. Foldes-Papp, S. Wennmalm, and R. Rigler, “The fluctuating enzyme: A single molecule approach,‘” Chem. Phys. 247, 11–22 (1999)

    Article  ADS  Google Scholar 

  28. D. Heinova, J. Blahovec, and I. Rosival, “Lactate dehydrogenase isoenzyme patterns in bird, carp and mammalian sera,” Eur. J. Clin. Chem. Clin. Biochem. 34, 91–95 (1996)

    Google Scholar 

  29. D. B. Craig and N. J. Dovichi, “E. coli β-galactosidase is heterogeneous with respect to the activity of individual molecules,” Can. J. Chem. 76, 623–626 (1998)

    Article  Google Scholar 

  30. K. Fujiyama, H. Takemura, S. Shibayama, K. Kobayashi, J. K Choi, A. Shinmyo, M. Takano, Y. Yamada, and H. Okada, “Structure of the horseradish peroxidase isozyme C genes,” Eur. J. Biochem. 173, 681–687 (1988)

    Article  Google Scholar 

  31. K. G. Welinder, “Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C,” Eur. J. Biochem. 96, 483–502 (1979)

    Article  Google Scholar 

  32. D. B. Craig and N. J. Dovichi, “Multiple labeling of proteins,” Anal. Chem. 70, 2493–2494 (1998)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dovichi, N.J., Polakowski, R., Skelley, A., Craig, D.B., Wong, J. (2001). Single-Molecule Enzymology. In: Single Molecule Spectroscopy. Springer Series in Chemical Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56544-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56544-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62702-6

  • Online ISBN: 978-3-642-56544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics