Skip to main content

Fluorescence Correlation Spectroscopy in Single-Molecule Analysis: Enzymatic Catalysis at the Single Molecule Level

  • Chapter

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 67))

Abstract

Fluorescence correlation spectroscopy (FCS) was introduced in the early seventies for the analysis of thermodynamic fluctuations of chemical systems [15, 18, 28] in an attempt to complement chemical relaxation spectroscopy as introduced by Eigen and de Meyer for the analysis of ultrafast kinetics. Chemical relaxation refers to the adjustment of chemical reactions into a new equilibrium state after an instantaneous change of intensive parameters such as temperature, pressure, or electric field [16]. Chemical fluctuations depend on the spontaneous change in number density of chemical systems due to processes involving transitions into the excited state [15], Brownian motion [15, 28] as well as chemical kinetics [18, 29].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Agmon and J. J. J. Hopfield, Chem. Phys. 78, 6947 (1983)

    ADS  Google Scholar 

  2. N. J. Agmon, Phys. Chem. B 2000, 104, 7830 (2000)

    Article  Google Scholar 

  3. W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, Science 265, 364 (1994)

    Article  ADS  Google Scholar 

  4. A. M. Bereshkovskii, A. Szabo, and G. H. J. Weis, Chem. Phys. 110, 9145 (1999)

    ADS  Google Scholar 

  5. G. Careri, P. Fasella, and E. Gratton, Crit. Rev. Biochem. 3, 141 (1975)

    Article  Google Scholar 

  6. D. B. Craig, E. A. Arriaga, C. Y. Wong, H. Lu, and N. J. J. Dovichi, J. Am. Chem. Soc. 118, 5245 (1996)

    Article  Google Scholar 

  7. J. Dapprich, Ü. Mets, W. Simm, M. Eigen, and R. Rigler, Exp. Tech. Phys. 46, 259 (1995)

    Google Scholar 

  8. R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, Nature 355 (1997)

    Google Scholar 

  9. O. Edholm and C. Blomberg, Chem. Phys. 252, 221–225 (2000)

    Article  Google Scholar 

  10. L. Edman, Ü. Mets, and R. Rigler, Tech. Phys. 41, 259 (1995)

    Google Scholar 

  11. L. Edman, Ü. Mets, and R. Rigler, Proc. Natl. Acad. Sci. USA 93, 6710 (1996)

    Article  ADS  Google Scholar 

  12. L. Edman, S. Wennmalm, F. Thamsen, and R. Rigler, Chem. Phys. Lett. 292, 15 (1998)

    Article  ADS  Google Scholar 

  13. L. Edman Z. Földes Papp S. Wennmalm and R. Rigler Chem. Phys. 247] 11 1999

    Google Scholar 

  14. L. Edman and R. Rigler, Proc. Natl. Acad. Sci. USA (2000)

    Google Scholar 

  15. M. Ehrenberg and R. Rigler, Chem. Phys. 4, 390 (1974)

    Article  ADS  Google Scholar 

  16. M. Eigen and L. DeMeyer, in: Techniques in Org. Chemistry. Investigation of Rates Mechanism of Reactions, S. L. Friess, E. S. Lewis, and A. Weissberger (eds.), vol. VIII, part II, pp. 895–1054 (Interscience Publishers, 1967)

    Google Scholar 

  17. M. Eigen and R. Rigler, Proc. Natl. Acad. Sci. USA 91, 5740 (1994)

    Article  ADS  Google Scholar 

  18. E. Elson and D. Magde, Biopolymers 13, (1974)

    Google Scholar 

  19. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254, 1598 (1991)

    Article  ADS  Google Scholar 

  20. E. Geva and J. L. Skinner, Chem. Phys. Lett. 288, 255 (1998)

    Article  Google Scholar 

  21. A. Y. T. T. Ha, J. Liang, W. B. Caldwell, A. A. Deniz, S. Chemla, P. G. Schultz, S. and Weiss, Proc. Natl. Acad. Sci. USA 96, 893 (1999)

    Article  ADS  Google Scholar 

  22. U. Haupts, S. Maiti, P. Schwille, and W. W. Webb, Proc. Natl. Acad. Sci. 13573 (1998)

    Google Scholar 

  23. A. Ishijima, H. Kojima, T. Funatsu, Tokumanaga, and T. Yanagida, Cell 92, 143 (1998)

    Article  Google Scholar 

  24. Y. Jia, A. Sytnik, L. Li, S. Vladimirov, B. S. Cooperman, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 94, 7932 (1997)

    Article  ADS  Google Scholar 

  25. M. J. Karplus, Phys. Chem. B 194, 11 (2000)

    Google Scholar 

  26. H. P. Lu and X. S. Xie, Nature 385, (1997)

    Google Scholar 

  27. H. P. Lu, L. Xun, and X. S. Xie, Science 282, 1877 (1998)

    Article  ADS  Google Scholar 

  28. D. Magde, E. Elson, and W. W. Webb, Phys. Rev. Lett. 29, (1972)

    Google Scholar 

  29. D. Magde, E. Elson, and W. W. Webb, Biopolymers 13, 29 (1974)

    Article  Google Scholar 

  30. U. Mets and R. Rigler, J. Fluorescence 4, 259 (1994)

    Article  Google Scholar 

  31. J. A. McCammon, B. R. Gelin, M. Karplus, and P. G. Wolynes, Nature 262, 325

    Google Scholar 

  32. U. Mets, J. Widengren, and R. Rigler, Chem. Phys. 218, 191 (1997)

    Article  Google Scholar 

  33. W. E. Moerner and M. Orrit, Science, 283, 1670 (1999)

    Article  ADS  Google Scholar 

  34. R. Polakowski, D. B. Craig, N. Skelley, and N. J. J. Dovichi, Am. Chem. Soc. 112, 4853 (2000)

    Article  Google Scholar 

  35. R. Rigler, J. Biotechnology 41, 1779 (1995)

    Article  Google Scholar 

  36. R. Rigler and J. Widengren, J. Bio. Science, B. Klinge and Ch. Owman (eds.), p. 180 (Lund University Press, Lund, 1990)

    Google Scholar 

  37. R. Rigler and U. Mets, Soc. Photo-Opt. Instr. Eng. 1921, 23 (1993)

    Google Scholar 

  38. R. Rigler, F. Claesens, and G. Lomakka, Springer Series in Chemical Physics 38, D. H. Auston and K. B. Eisenthal (eds.), p. 472 (Springer-Verlag, 1984)

    Google Scholar 

  39. R. Rigler, J. Widengren, and U. Mets, in: Fluorescence Spectroscopy, O. S. Wolfbeis (ed.), p. 13 (Springer-Verlag, 1992)

    Google Scholar 

  40. R. Rigler, U. Mets, J. Widengren, and P. Kask, Eur. Biophys. J. 22, 169 (1993)

    Article  Google Scholar 

  41. E. B. Shera, N. K. Seitzinger, L. M. Davies, R. A. Keller, and S. A. Soper, Chem. Phys. Lett. 174, 553 (1990)

    Article  ADS  Google Scholar 

  42. G. K. Schenter, H. P. Lu, and X. S. Xie, J. Phys. Chem. A 103, 10477 (1999)

    Article  Google Scholar 

  43. J. K. Trautman, J. J. Macklin, L. E. Bruss, and E. Betzig, Nature 369, 40–42 (1994)

    Article  ADS  Google Scholar 

  44. J. Wang and P. G. Wolynes, Phys. Rev. Lett. 74, 4317 (1995)

    Article  ADS  Google Scholar 

  45. J. Wang and P. G. Wolynes, J. Chem. Phys. 110, 4812 (1999)

    Article  ADS  Google Scholar 

  46. S. Wennmalm, L. Edman, and R. Rigler, Proc. Natl. Acad. Sci. USA 94, 10641 (1997)

    Article  ADS  Google Scholar 

  47. S. Wennmalm and R. Rigler, J. Phys. Chem. B 103, 2516 (1999)

    Article  Google Scholar 

  48. S. Wennmalm, L. Edman, and R. Rigler, Chem. Phys. 247, 61 (1999)

    Article  ADS  Google Scholar 

  49. J. Widengren and R. Rigler, Bioimaging 4, 149–157 (1996)

    Article  Google Scholar 

  50. J. Widengren and R. Rigler, J. Fluorescence 7, 211 (1996)

    Google Scholar 

  51. J. Widengren and R. Rigler, Cell. Mol. Bio. 44, 57 (1998)

    Google Scholar 

  52. J. Widengren, R. Rigler, and U. Mets, J. Fluorescence 4, 255 (1994)

    Article  Google Scholar 

  53. J. Widengren, U. Mets, and R. Rigler, J. Phys. Chem. 3368, (1995)

    Google Scholar 

  54. J. Widengren, J. Dapprich, and R. Rigler, Chem. Phys. 16, 417 (1996)

    Google Scholar 

  55. J. Widengren, T. Terry, and R. Rigler, Chem. Phys. 249, 259–271 (1999)

    Article  Google Scholar 

  56. J. Widengren, U. Mets, and R. Rigler, Chem. Phys. 250, 171 (1999)

    Article  Google Scholar 

  57. X. S. Xie and J. K. Trautman, Ann. Rev. Phys. Chem. 59, 441 (1998)

    Article  ADS  Google Scholar 

  58. Q. F. Xue and E. S. Yeung, Nature 373, 681 (1995)

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigler, R., Edman, L., Földes-Papp, Z., Wennmalm, S. (2001). Fluorescence Correlation Spectroscopy in Single-Molecule Analysis: Enzymatic Catalysis at the Single Molecule Level. In: Single Molecule Spectroscopy. Springer Series in Chemical Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56544-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56544-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62702-6

  • Online ISBN: 978-3-642-56544-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics