Skip to main content

The Cardiovascular Continuum — Pathophysiology and Targets for Therapy

  • Conference paper
Prevention of Disease Progression Throughout the Cardiovascular Continuum
  • 76 Accesses

Abstract

It has become widely acknowledged that heart failure can no longer be regarded simply as a discrete clinical entity, but rather as the endpoint of a continuum of cardiovascular disease [1, 2]. Research conducted during the past decade has led to a clearer understanding of the sequence of events that leads ultimately to end-stage heart failure. A consensus statement published by Dzau and Braunwald in 1991 first outlined the concept of a cardiovascular continuum from initial risk factors, such as hypertension, hypercholesterolaemia and diabetes mellitus, through left ventricular hypertrophy, endothelial dysfunction and coronary artery disease and on to heart failure (Figure 1) [1]. The concept of a continuum between these risk factors and heart failure is supported by data from epidemiological studies that have shown that hypertension and coronary artery disease (mainly through myocardial infarction) are powerful predisposing risk factors for chronic heart failure [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 1991; 121: 1244–63.

    Article  PubMed  CAS  Google Scholar 

  2. Deedwania PC. The progression from hypertension to heart failure. Am J Hypertens 1997; 10: 280S–288S.

    Article  PubMed  CAS  Google Scholar 

  3. Kannel WB. Potency of vascular risk factors as the basis for antihypertensive therapy. Eur Heart J 1992; 13 (Suppl G): 34–42.

    Article  PubMed  Google Scholar 

  4. Ruschitzka FT, Noll G, Luscher TF. The endothelium in coronary artery disease. Cardiology 1997; 88 (Suppl3): 3–19.

    Article  PubMed  CAS  Google Scholar 

  5. Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998; 352 (Suppl 1): SI8–S14.

    Article  PubMed  Google Scholar 

  6. Julius S, Valentini M. Consequences of the increased autonomic nervous drive in hypertension, heart failure and diabetes. Blood Press 1998; Suppl 3: 5–13.

    CAS  Google Scholar 

  7. Veterans Administration Cooperative Study Group. Effects of treatment on morbidity in hypertension II. JAMA 1970; 213: 1143–52.

    Article  Google Scholar 

  8. Koren MJ, Devereux RB, Casale PN et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345–52.

    PubMed  CAS  Google Scholar 

  9. Devereux RB, de Simone G, Koren MJ et al. Left ventricular mass as a predictor of development of hypertension. Am J Hypertens 1991; 4: 603S–607S.

    PubMed  CAS  Google Scholar 

  10. Tarazi RC. The heart in hypertension. N Engl J Med 1985; 312: 308–9.

    Article  PubMed  CAS  Google Scholar 

  11. Tarazi RC, Frohlich ED. Is reversal of cardiac hypertrophy a desirable goal of antihypertensive therapy? Circulation 1987; 75: I113–I117.

    PubMed  CAS  Google Scholar 

  12. Messerli FH. The Heart in Hypertension. York Medical Books, New York (1987).

    Google Scholar 

  13. Dubus I, Samuel JL, Swynghedauw B. Origin and mechanisms of heart failure in hypertensive patients: left ventricular remodelling in hypertensive heart disease. Eur Heart J 1993; 14 (Suppl J): 76–81.

    PubMed  Google Scholar 

  14. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest 1983; 72: 732–8.

    Article  PubMed  CAS  Google Scholar 

  15. Leenen FH, Smith DL, Farkas RM et al. Vasodilators and regression of left ventricular hypertrophy. Hydralazine versus prazosin in hypertensive humans. Am J Med 1987; 82: 969–78.

    Article  PubMed  CAS  Google Scholar 

  16. Devereux RB. Therapeutic options in minimizing left ventricular hypertrophy. Am Heart J 2000; 139: S9–S14.

    Article  PubMed  CAS  Google Scholar 

  17. Lowes BD, Gill EA, Abraham WT et al. Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol 1999; 83: 1201–5.

    Article  PubMed  CAS  Google Scholar 

  18. Hall SA, Cigarroa CG, Marcoux L et al. Time course of improvement in left ventricular function mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coli Cardiol 1995; 25:1154–61.

    Article  CAS  Google Scholar 

  19. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282: 2035–42.

    Article  PubMed  CAS  Google Scholar 

  20. Ferrari R, Agnoletti L, Ceconi C et al. Endothelial dysfunction in congestive heart failure: effects of carvedilol. Heart Failure Reviews 1999; 4: 53–63.

    Article  CAS  Google Scholar 

  21. Ferrari R, Agnoletti L, Comini L et al. Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J 1998; 19 (Suppl B): B2–B11.

    PubMed  CAS  Google Scholar 

  22. Steinberg D, Parthasarathy S, Carew TE et al. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–24.

    Article  PubMed  CAS  Google Scholar 

  23. Steinberg D, Witztum J. Lipoproteins and atherogenesis. Current concepts. JAMA 1990; 264: 3047–52.

    Article  PubMed  CAS  Google Scholar 

  24. Yue TL, Cheng HY, Lysko PG et al. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 1992; 263: 92–8.

    PubMed  CAS  Google Scholar 

  25. Feuerstein GZ, Ruffolo RR, Jr. Carvedilol, a novel multiple action antihypertensive agent with antioxidant activity and the potential for myocardial and vascular protection. Eur Heart J 1995; 16 (Suppl F): 38–42.

    Article  PubMed  CAS  Google Scholar 

  26. Giugliano D, Acampora R, Marfella R et al. Metabolic and cardiovascular effects of carvedi-lol and atenolol in non-insulin-dependent diabetes mellitus and hypertension. Ann Intern Med 1997; 126: 955–9.

    PubMed  CAS  Google Scholar 

  27. Maggi E, Marchesi E, Covini D et al. Protective effects of carvedilol, a vasodilating beta-adrenoceptor blocker, against in vivo low density lipoprotein oxidation in essential hypertension. J Cardiovasc Pharmacol 1996; 27: 532–8.

    Article  PubMed  CAS  Google Scholar 

  28. Grossman W. Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med 1980; 69: 576–84.

    Article  PubMed  CAS  Google Scholar 

  29. Tarazi RC, Fouad FM. Assessment of cardiac status in hypertensive patients. J Hypertens 1985; 3 (Suppl 2): S27–S31.

    CAS  Google Scholar 

  30. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992; 85: 1046–55.

    Article  PubMed  CAS  Google Scholar 

  31. Narula J, Haider N, Virmani R et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 1182–9.

    Article  PubMed  CAS  Google Scholar 

  32. Unger T. Neurohormonal modulation in cardiovascular disease. Am Heart J 2000; 139: S2–S8.

    Article  PubMed  CAS  Google Scholar 

  33. Cody RJ. The sympathetic nervous system and the renin-angiotensin-aldosterone system in cardiovascular disease. Am J Cardiol 1997; 80: 9J–14J.

    Article  PubMed  CAS  Google Scholar 

  34. Burnier M, Brunner HR. Angiotensin II receptor antagonists. Lancet 2000; 355: 637–45.

    Article  PubMed  CAS  Google Scholar 

  35. Cody RJ. The integrated effects of angiotensin II. Am J Cardiol 1997; 79: 9–11.

    Article  PubMed  CAS  Google Scholar 

  36. Cody RJ. The clinical potential of renin inhibitors and angiotensin antagonists. Drugs 1994; 47: 586–98.

    Article  PubMed  CAS  Google Scholar 

  37. Peach MJ, Dostal DE. The angiotensin II receptor and the actions of angiotensin II. J Cardiovasc Pharmacol 1990; 16 (Suppl 4): S25–S30.

    Article  PubMed  CAS  Google Scholar 

  38. Feener EP, Northrup JM, Aiello LP et al. Angiotensin II induces plasminogen activator inhibitor-1 and-2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 1995; 95: 1353–62.

    Article  PubMed  CAS  Google Scholar 

  39. Dupont AG. Effects of carvedilol on renal function. Eur J Clin Pharmacol 1990; 38 (Suppl 2): S96–100.

    Article  PubMed  Google Scholar 

  40. Leonetti G, Sampieri L, Cuspidi C et al. Resting and postexercise hemodynamic effects of carvedilol, a beta-adrenergic blocker and precapillary vasodilator in hypertensive patients. J Cardiovasc Pharmacol 1987; 10 (Suppl 11): S94–S96.

    PubMed  Google Scholar 

  41. Francis GS, Cohn JN, Johnson G et al. Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The VHeFT VA Cooperative Studies Group. Circulation 1993; 87 (Suppl 6): V140–V148.

    Google Scholar 

  42. Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure. Am J Cardiol 1978; 41: 233–43.

    Article  PubMed  CAS  Google Scholar 

  43. Cohn JN, Levine TB, Olivari MT et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–23.

    Article  PubMed  CAS  Google Scholar 

  44. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997; 80: 15L–25L.

    Article  PubMed  CAS  Google Scholar 

  45. Keirn M, Schafer S, Mingers S et al. Left ventricular mass is linked to cardiac noradrenaline in normotensive and hypertensive patients. J Hypertens 1996; 14: 1357–64.

    Article  Google Scholar 

  46. Pepper GS, Lee RW. Sympathetic activation in heart failure and its treatment with betablockade. Arch Intern Med 1999; 159: 225–34.

    Article  PubMed  CAS  Google Scholar 

  47. Remme WJ. The sympathetic nervous system and ischaemic heart disease. Eur Heart J 1998; 19 (Suppl F): F62–F71.

    PubMed  CAS  Google Scholar 

  48. Molina-Viamonte V, Anyukhovsky EP, Rosen MR. An alpha1-adrenergic receptor subtype is responsible for delayed afterdepolarizations and triggered activity during simulated ischemia and reperfusion of isolated canine Purkinje fibers. Circulation 1991; 84: 1732–40.

    Article  PubMed  CAS  Google Scholar 

  49. Kaumann AJ, Sanders J. Both beta 1-and beta 2-adrenoceptors mediate catecholamine-evoked arrhythmias in isolated human atrium. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 536–40.

    Article  PubMed  CAS  Google Scholar 

  50. Smith KM, MacMillan JB, McGrath JC. Investigation of alpha1-adrenoreceptor subtypes in mediating vasoconstriction in rabbit cutaneous resistance arteries. Br J Pharmacol 1997; 122: 825–32.

    Article  PubMed  CAS  Google Scholar 

  51. Elhawary AM, Pang CC. Alpha1B adrenoreceptors mediate renal tubular sodium and water reabsorption in the rat. Br J Pharmacol 1994; 111: 819–24.

    Article  PubMed  CAS  Google Scholar 

  52. Communal C, Singh K, Pimentel DR et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the ß-adrenergic pathway. Circulation 1998; 98: 1329

    Article  PubMed  CAS  Google Scholar 

  53. Packer M, Bristow MR, Cohn JN et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996; 334: 1349–55.

    Article  PubMed  CAS  Google Scholar 

  54. The MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metopro-101 CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999; 353: 2001–7.

    Article  Google Scholar 

  55. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999; 353: 9–13.

    Article  Google Scholar 

  56. Bristow MR, Hershberger R, Port JD et al. Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 1990; 82 (2 Suppl): I12–25.

    Article  Google Scholar 

  57. Cleland JG, Bristow MR, Erdmann E et al. Beta-blocking agents in heart failure. Should they be used and how? Eur Heart J 1996; 17: 1629–39.

    Article  PubMed  CAS  Google Scholar 

  58. Giannattasio C, Cattaneo BM, Seravalle G et al. Alphal-blocking properties of carvedilol during acute and chronic administration. J Cardiovasc Pharmacol 1992; 19 (Suppl 1): S18–S22.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unger, T. (2001). The Cardiovascular Continuum — Pathophysiology and Targets for Therapy. In: Rydén, L.E. (eds) Prevention of Disease Progression Throughout the Cardiovascular Continuum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56525-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56525-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62567-1

  • Online ISBN: 978-3-642-56525-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics