Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 258))

Abstract

The Epstein-Barr virus (EBV) can choose between two alternative life styles. It infects B lymphocytes, transforming them into lymphoblastoid lines and, in contrast to neurotropic herpesviruses such as herpes simplex virus type I that establish latency in nondividing neurons, must maintain its latent genomes in cells that have the potential to divide. In B lymphoblastoid cell lines established by EBV infection, the viral genome is maintained as covalently closed circular plasmids forming nucleosomal structures with histone proteins. The number of copies is maintained at 10–50 per cell to be duplicated once during each cell division cycle by the host cellular DNA replication machinery. When production of virus is induced, the circular genome becomes a ready template for amplification, generating thousands of copies per cell during lytic infection. Replication intermediates are head-to-tail concatamers, perhaps through a rolling-circle DNA replication, which are cleaved and packaged into infectious viral particles. The lytic phase of EBV DNA replication is dependent on seven viral replication proteins: BZLF1, BALF5, BMRF1, BALF2, BBLF4, BSLF1, and BBLF2/3 gene products. The BZLF1 protein is an oriLyt-binding protein and also acts as the lytic transactivator. The BALF5 gene encodes the DNA Pol catalytic subunit and the BMRF1 gene encodes the DNA Pol accessory subunit. They form a complex to act as the Pol holoenzyme. A single-stranded (ss)DNA-binding protein is encoded by the BALF2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson AL, Kenney S (1999) The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73:6551–6558

    PubMed  CAS  Google Scholar 

  • Aiyar A, Tyree C, Sugden B (1998) The plasmid replication of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J 17:6394–6403

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Feederle R, Kremmer E, Hammerschmidt W (1999) Cellular transcription fact ors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. EMBO J 18:6095–6105

    Article  PubMed  CAS  Google Scholar 

  • Cayrol C. Flemington EK (1996) The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 15:2748–2759

    PubMed  CAS  Google Scholar 

  • Chiou JF, Li JKK, Cheng YC (1985) Demonstration of a stimulatory protein for virus-specified DNA Polymerase in phorbol-ester treated Epstein-Barr virus carrying cells. Proc Natl Acad Sci USA 82:5728–5731

    Article  PubMed  CAS  Google Scholar 

  • Crute JJ, Mocarski ES, Lehman IR (1988) A DNA helicase induced by herpes simplex virus type 1. Nucleic Acids Res 16:6585–6596

    Article  PubMed  CAS  Google Scholar 

  • Crute JJ, Tsurumi T, Zhu L, Weiler SK, Olivo PD, Challberg MD, Mocarski ES, Lehman IR (1989) Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc Natl Acad Sci USA 86:2186–2189

    Article  PubMed  CAS  Google Scholar 

  • Debyser Z, Tabor S, Richardson CC (1994) Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7. Cell 77:157–166

    Article  PubMed  CAS  Google Scholar 

  • Decaussin G, Leclerc V, Ooka T (1995) The lytic cycle of Epstein-Barr virus in the nonproducer Raji line can be rescued by the expression of a 135-kilodalton protein encoded by the BALF2 open reading frame. J Virol 69:7309–7314

    PubMed  CAS  Google Scholar 

  • Dodson MS, Crute JJ, Bruckner RC, Lehman IR (1989) Overexpression and assembly of the herpes simplex virus type 1 helicase-primase in insect cells. J Biol Chem 264:20853–20838

    Google Scholar 

  • Dracheva S, Koonin EV, Crute JJ (1995) Identification of the primase active site of the herpes simplex virus type 1 helicase-primase. J Biol Chem 270:14148–14153

    Article  PubMed  CAS  Google Scholar 

  • Epstein AL (1984) Immunochemical characterization with monoclonal antibodies of Epstein-Barr virus-associated early antigens in chemically induced cells. J Virol 50:372–379

    PubMed  CAS  Google Scholar 

  • Farrell P, Rowe D, Rooney C, Kouzarides T (1989) Epstein-Barr virus BZLF1 trans-activator specifically binds to consensus Ap1 site and is related to c-fos. EMBO J 8:127–132

    PubMed  CAS  Google Scholar 

  • Fay PJ, Johanson KO, McHenry CS, Bambara RA (1982) Size classes of products synthesized processively by two subassemblies of Escherichia coli DNA Polymerase III holoenzyme. J Biol Chem 257:5692–5699

    PubMed  CAS  Google Scholar 

  • Fixman ED, Hayward GS, Hayward SD (1992) trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66:5030–5039

    PubMed  CAS  Google Scholar 

  • Fixman ED, Hayward GS, Hayward SD (1995) Replication of Epstein-Barr virus ori Lyt: Lack of a dedicated virally encoded origin-binding protien and dependence on Zta in cotransfection assays. J Virol 69:2998–3006

    PubMed  CAS  Google Scholar 

  • Fry M, Loeb LA (1986) Animal cell DNA polymerases. CRC Press

    Google Scholar 

  • Fujii K, Yokoyama N, Kiyono T, Kuzushima K, Homma M, Nishiyama Y, Fujita M, Tsurumi T (2000) The Epstein-Barr virus BALF5 Pol catalytic subunit physically interacts with the BBLF4/BSLF1/ BBLF2/3 complex. J Virol 74:2550–2557

    Article  PubMed  CAS  Google Scholar 

  • Gahn TA, Schildkraut CL (1989) The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58:527–535

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Bouchey J, Curtin K, Knipe DM (1988) Genetic identification of a portion of the herpes simplex virus ICP8 protein required for DNA-binding. Virology 163:319–329

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD (1998) The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72:8559–8567

    PubMed  CAS  Google Scholar 

  • Georgaki A, Strack B, Podust V, Hubscher U (1992) DNA unwinding activity of replication protein A. FEBS lett 308:240–244

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb J, Challberg MD (1994) Interaction of herpes simplex virus type 1 DNA Polymerase and the UL42 accessory protein with a model primer template. J Virol 68:4937–4945

    PubMed  CAS  Google Scholar 

  • Gottlieb J, Marcy AI, Coen DM, Challberg MD (1990) The herpes simplex virus type 1 UL42 gene product: a subunit of DNA Polymerase that functions to increase processivity. J Virol 64:5976–5987

    PubMed  CAS  Google Scholar 

  • Graves-Woodward KL, Weller SK (1996) Replacement of Gly815 in helicase motif V alter the single-stranded DNA-dependent ATPase activity of the herpes simplex virus type 1 helicase-primase. J Biol Chem 271:13629–13635

    Article  PubMed  CAS  Google Scholar 

  • Gruffat H, Renner O, Pich D, Hammerschmidt W (1995) Cellular proteins bind to the downstream component of the lytic origin of DNA replication of Epstein-Barr virus. J Virol 69:1878–1886

    PubMed  CAS  Google Scholar 

  • Gutierrez C, Martin G, Sogo JM, Salas M (1991) Mechanism of stimulation of DNA replication by bacteriophage f29 single stranded DNA-binding protein p5. J Biol Chem 266:2104–2111

    PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B (1988) Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55:427–433

    Article  PubMed  CAS  Google Scholar 

  • Huber HE, Tabor S, Richardson CC (1987) Escherichia coli thioredoxin stabilizes complexes of bacteriophage T7 DNA Polymerase and primed templates. J Biol Chem 262:16224–16232

    PubMed  CAS  Google Scholar 

  • Hurwitz J, Dean FB, Kwng AD, Lee S-H (1990) The in vitro replication of DNA containing the SV40 origin. J Biol Chem 262:16224–16232

    Google Scholar 

  • Javis TC, Paul LS, Hockensmith JW, von Hippel PH (1989) Structure and enzymatic studies of the T4 DNA replication system. II ATPase properties of the Polymerase accessory protein complex. J Biol Chem 264:12717–12729

    Google Scholar 

  • Joyce CM (1989) How DNA travels between the separate Polymerase and 3’-5’-exonuclease sites of DNA Polymerase I (Klenow fragment). J Biol Chem 264:10858–10866

    PubMed  CAS  Google Scholar 

  • Kallin B, Stern SL, Saemundssen AK, Luka J, J rnvall H, Eriksson B, Tao P-Z, Nilsson MT, Klein G (1985) Purification of Epstein-Barr virus DNA Polymerase from P3HR-1 cells. J Virol 54:561–568

    PubMed  CAS  Google Scholar 

  • Khamis MI, Casas-Finet JR, Maki AH, Murphy JB, Chase JW (1987) Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single stranded polynucleotides. J Biol Chem 262:10938–10945

    PubMed  CAS  Google Scholar 

  • Kiehl A, Dorsky DL (1991) Coorperation of EBV DNA Polymerase and EA-D (BMRF1) in vitro and colocalization in nuclei of infected cells. Virology 184:330–340

    Article  PubMed  CAS  Google Scholar 

  • Kiehl A, Dorsky DL (1995) Bipartite DNA-binding region of the Epstein-Barr virus BMRF1 product essential for DNA Polymerase accessory function. J Virol 69:1669–1677

    PubMed  CAS  Google Scholar 

  • King GC, Coleman J 3E (1988) The fd gene 5 protein-d(pA)40–60 complex: ’H NMR supports a localized base-binding model. Biochemistry 27:6947–6953

    Article  PubMed  CAS  Google Scholar 

  • Klinedinst DK, Challberg MD (1994) Helicase-primase complex of herpes simplex virus type 1: a mutation in the UL52 subunit abolishes primase activity. J Virol 68:3693–3701

    PubMed  CAS  Google Scholar 

  • Kornberg A, Baker T (1992) DNA replication, 2nd ed., WH Freeman & Co., New York

    Google Scholar 

  • Lee M-A, Diamond ME, Yates JL (1999) Genetic evidence that EBNA-1 is needed for efficient, stable latent infection by Epstein-Barr virus. J Virol 73:2974–2982

    PubMed  CAS  Google Scholar 

  • Li J-S, Zhou B-S, Dutschman GE, Grill SP, Tan R-S, Cheng Y-C (1987) Association of Epstein-Barr virus early antigen diffuse component and virus-specified DNA Polymerase activity. J Virol 61:2947–2949

    PubMed  CAS  Google Scholar 

  • Lin J-C, Sista ND, Besencon F, Kamine J, Pagano JS (1991) Identification and functional characterization of Epstein-Barr virus DNA Polymerase by in vitro transcription-translation of a cloned gene. J Virol 65:2728–2731

    PubMed  CAS  Google Scholar 

  • Little R, Schildkraut C (1995) Initiation of latent DNA replication in the Epstein-Barr virus genome can occur at sites other than the genetically defined origin. Mol Biol Cell 5:2893–2903

    Google Scholar 

  • Liu C-C, Alberts BM (1980) Pentaribonucleotides of mixed sequence are synthesized and efficiently prime de novo DNA chain starts in the T4 bacteriophage DNA replecation system. Proc Natl Acad Sci USA 77:5698–5703

    Article  PubMed  CAS  Google Scholar 

  • Marsden HS, McLean GW, Barnard EC, Francis GJ, MacEachran K, Murphy M, McVey G, Cross A, Abbotts AP, Stow ND (1997) The catalytic subunit of the DNA polymerase of herpes simplex virus type 1 interacts specifically with the C terminus of the UL8 component of the viral helicase-primase complex. J Virol 71:6390–6397

    PubMed  CAS  Google Scholar 

  • Monaghan A, Weber A, Hay RT (1994) Adenovirus DNA binding protein: helix destabilizing properties. Nucl Acid Res 22:742–748

    Article  CAS  Google Scholar 

  • Nakai H, Richardson CC (1986) Interactions of the DNA polymerase and gene 4 protein of bacteriophage T7. J Biol Chem 261:15208–15216

    PubMed  CAS  Google Scholar 

  • Neal GAM, Kitchingman GR (1990) Conserved region 3 of the adenovirus type 5 DNA-binding protein is important for interaction with single stranded DNA. J Virol 64:630–638

    Google Scholar 

  • Nishiyama Y, Suzuki S, Yamauchi M, Maeno K, Yoshida S (1984) Characterization of an aphidicolin- resistant mutant of herpes simplex virus type 2 which induces an altered viral DNA polymerase. Viro Rlogy 135:87–96

    Article  CAS  Google Scholar 

  • Notarnicola SM, Mulcahy HL, Lee J, Richardson CC (1997) The acidic carboxyl terminus of the bacteriophage T7 gene 4 helicase/primase interacts with T7 DNA polymerase. J Biol Chem 272:18425– 18433

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell M, Studwell PS (1990) Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps. J Biol Chem 265:1179–1187

    PubMed  Google Scholar 

  • Packham G, Economou A, Rooney CM, Rowe DT, Farrel PJ (1990) Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol 64:2110–2116

    PubMed  CAS  Google Scholar 

  • Pearson GR, Vroman B, Chase B, Sculley T, Hummel H, Kieff E (1983) Identification of Polypeptide components of the Epstein-Barr virus early antigen complex with monoclonal antibodies. J Virol 47:193–201

    PubMed  CAS  Google Scholar 

  • Pfuller R, Hammerschmidt W (1996) Plasmid-like replicative intermediates of the Epstein-Barr virus lytic origin of DNA replication. J Virol 70:3423–3431

    PubMed  CAS  Google Scholar 

  • Portes-Sentis S, Sergeant A, Gruffat H (1997) A particular DNA structure is required for the function of a cis-acting component of the Epstein-Barr virus oriLyt origin of replication. Nucl Acid Res 25:1347–1354

    Article  CAS  Google Scholar 

  • Prasad BVV, Chiu W (1987) Sequence comparison of single stranded DNA binding proteins and its structural implications. J Mol Biol 193:579–584

    Article  PubMed  CAS  Google Scholar 

  • Sarisky RT, Gao Z, Lieberman PM, Fixman ED, Hayward GS, Hayward D (1996) A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 70:8340– 8347

    PubMed  CAS  Google Scholar 

  • Schepers A, Pich D, Hammerschmidt W (1996) Activation of oriLyt, the lytic origin of DNA replication of Epstien-Barr virus, by BZLF1. Virology 220:367–376

    Article  PubMed  CAS  Google Scholar 

  • Schepers A, Pich D, Mankertz J, Hammerschmidt W (1993) cis-acting elements in the lytic origin of DNA replication of Epstein-Barr virus. J Virol 67:4237–4245

    PubMed  CAS  Google Scholar 

  • ShamooY, Ghosaini LR, Keating KM, Williams KR, Sturtevant JM, KonigsbergWH (1989) Site-specific mutagenesis of T4 gene 32: The role of tyrosine residues in protein nucleic acid interactions. Biochemistry 28:7409–7417

    Article  PubMed  CAS  Google Scholar 

  • Shirakata M, Imadome K, Hirai K (1999) Requirement of replication licensing for the Dyad Symmetry element-dependent replication of the Epstein-Barr virus oriP minichromosome. Virology 263:42–54

    Article  PubMed  CAS  Google Scholar 

  • Shire K, Ceccarelli DFJ, Avolio-Hunter TM, Frappier L (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 73:2587–2595

    PubMed  CAS  Google Scholar 

  • Spector FC, Giordano LH, Sivaraja M, Peterson MG (1998) Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J Virol 72:6979–6987

    PubMed  CAS  Google Scholar 

  • Tabor S, Richardson CC (1981) Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. Proc Natl Acad Sci USA 78:205–209

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating cell nuclear antigen: functional similarity of DNA Polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci USA 87:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T, Stillman T (1991) Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA Polymerase and their accessory proteins. J Biol Chem 266:1950–1960

    PubMed  CAS  Google Scholar 

  • Tsurumi T (1991a) Characterization of 3’-to-5’ exonuclease activity associated with Epstein-Barr virus DNA Polymerase. Virology 182:376–381

    Article  PubMed  CAS  Google Scholar 

  • Tsurumi T (1991b) Primer terminus recognition and highly processive replication by Epstein-Barr virus DNA Polymerase. Biochem J 280:703–708

    PubMed  CAS  Google Scholar 

  • Tsurumi T (1992) Selective inhibition of the 3’-to-5’ exonuclease activity associated with Epstein-Barr virus DNA Polymerase by ribonucleoside monophosphates. Virology 189:803–807

    Article  PubMed  CAS  Google Scholar 

  • Tsurumi T (1993a) Purification and characterization of the DNA-binding activity of the Epstein-Barr virus DNA polymerase accessory protein BMRF1 gene products, as expressed in insect cells by using the baculovirus system. J Virol 67:1681–1687

    PubMed  CAS  Google Scholar 

  • Tsurumi T, Daikoku T, Kurachi R, Nishiyama Y (1993b) Functional interaction between Epstein-Barr virus DNA Polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67:7648–7765

    PubMed  CAS  Google Scholar 

  • Tsurumi T, Kobayashi A, Tamai K, Daikoku T, Kurachi R, Nishiyama Y (1993c) Functional expression and characterization of the Epstein-Barr virus DNA polymerase catalytic subunit. J Virol 67:4651– 4658

    PubMed  CAS  Google Scholar 

  • Tsurumi T, Daikoku T, Nishiyama Y (1994) Further characterization of the interaction between the Epstein-Barr virus DNA Polymerase catalytic sub unit and its accessory subunit with regard to the 3’-to-5’ exonucleolytic activity and stability of initiation complex at primer terminus. J Virol 68:3354–3363

    PubMed  CAS  Google Scholar 

  • Tsurumi T, Kobayashi A, Tamai K, Yamada H, Daikoku T, Yamashita Y, Nishiyama Y (1996) Epstein-Barr virus single-stranded DNA-binding protein: purification, characterization, and action on DNA synthesis by the viral DNA Polymerase. Virology 222:352–364

    Article  PubMed  CAS  Google Scholar 

  • Tsurumi T, Kishore J, Yokoyama N, Fujita M, Daikoku T, Yamada H, Yamashita Y, Nishiyama Y (1998) Overexpression, purification and helix-destabilizing properties of Epstein-Barr virus ssDNA-binding protein. J Gen Virol 79:1257–1264

    PubMed  CAS  Google Scholar 

  • Villani G, Fay PJ, Bambara RA, Lehman IR (1981) Elongation of RNA-primed DNA templates by DNA Polymerase a from Drosophila melanogaster embryos. J Biol Chem 256:8202–8207

    PubMed  CAS  Google Scholar 

  • Wang Y, Hall JD (1990) Characterization of a major DNA-binding domain in the herpes simplex type 1 DNA-binding protein (ICP8). J Virol 64:2082–2089

    PubMed  CAS  Google Scholar 

  • Yates JL, Guan N (1991) Epstein-Barr virus-derived plasmids replication only per cell cycle and not amplified after entry into cells. J Virol 65:483–488

    PubMed  CAS  Google Scholar 

  • Yates JL, Warren N, Reisman D, Sugden B (1984) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–815

    Article  Google Scholar 

  • Yokoyama N, Fujii K, Hirata M, Tamai K, Kiyono T, Kuzushima K, Nishiyama Y, Fujita M, Tsurumi T (1999) Assembly of the Epstein-Barr virus BBLF4, BSLF1, BBLF2/3 proteins and their interactive properties. J Gen Virol 80:2879–2888

    PubMed  CAS  Google Scholar 

  • Young MC, Reddy MK, von Hippel PH (1992) Structure and function of the bacteriophage T4 DNA Polymerase holoenzyme. Biochemistry 31:8675–8690

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Middeldorp J, Madjar J, Ooka T (1997) A major DNA binding protein encoded by BALF2 open reading frame of Epstein-Barr virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA Polymerase. Virology 239:285–295

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Hong Y, Dorsky D, Holley-Guthrie E, Zalani S, Elshiekh NA, Kiehl A, Le T, Kenney S (1996) Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J Virol 70:5131–5142

    PubMed  CAS  Google Scholar 

  • Zhu L, Weller SK (1992) The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J Virol 66:469–479

    PubMed  CAS  Google Scholar 

  • Zijderveld DC, van der Vliet PC (1994) Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol 68:1158–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsurumi, T. (2001). EBV Replication Enzymes. In: Takada, K. (eds) Epstein-Barr Virus and Human Cancer. Current Topics in Microbiology and Immunology, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56515-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56515-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62568-8

  • Online ISBN: 978-3-642-56515-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics